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Some known concentration results for Markov processes

Let X be a nice ergodic Markov processes on RY with semigroup (P;):>o, generator L and invariant
distribution p. We are interested in

%JT F(X,)dt — p(f)) > x), fel?(w),x, T>0.

Co(f, T\x) = uN(
0
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Co(f, T\x) = uN( JT F(X,)dt — p(f)) > x), fel?(w),x, T>0.
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‘ 1
-
Bounds have been mostly studied with two approaches (Lyapunov vs. Poincaré [BCGO08]):

1. Functional inequalities:
e Poincaré inequality:

Var,(g) = n(g?) — n(g)? < Cp(—Lg g)y = ijg(X)(ng(X)) n(dx), geD(L).

[Lez01] For ||f|loo < co and v < u, dv/du € 12(p),

Tx? ) ’

dv
VIF, T, x) <2~ —
G T X< Hdu ILZ[p.]eXp< 2(02(f) + 2Cp || Flloox)
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Co(f, T\x) = uN( JT F(X,)dt — p(f)) > x), fel?(w),x, T>0.
0

‘ 1
-
Bounds have been mostly studied with two approaches (Lyapunov vs. Poincaré [BCGO08]):

1. Functional inequalities:
e Poincaré inequality:

Var,(g) = n(g?) — n(g)? < Cp(—Lg g)y = ijg(X)(ng(X)) n(dx), geD(L).

[Lez01] For ||f|loo < co and v < u, dv/du € 12(p),

o (_ Tx? )
2w TP\ 2(02(F) + 2G| Flloox)

o log-Sobolev inequality: (P;);>o symmetric and

Cy(f, T, x) ngj—:

Ent.(g?) == n(g?logg?) — n(g?) log n(g?) < 2Gs(—Lg. g)n. g€ D(L).
[GGW14] For |f(x)| < 1+ ||x|I%,

Tx? )

dv
<o|l&Y _
& (. 7.3 €2 gl > (- s T e TR e
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Some known concentration results for Markov processes

2. Mixing assumptions: for g € [0,1),
&y (t) = sup sup PY(ANn B)—PY(A)PY(B)| gexp(ft}%g).

520 A€o (Xy,u<s),BEo(Xy,u=s+t)
For reasonable v guaranteed given (sub)exponential ergodicity of (P;), i.e.,
1

[IPe(x, ) — pllrv S V(x) exp(—tT4).

[CGO8] For ||f]le < oo,

1—q
Cu(f, T,x) < 2exp (—c(q)(%) ) x> Clc,q)/VT.
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Martingale approximation for diffusions

e Let X be a (weak) solution to the SDE
dX, = b(X,) dt + o(X:) dW,,

b € Lip, (R4 R9), o € Lip(RY; RY*¢) and bounded, a:= 00" s.t. A [ < a(x) <Al Vx
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e Let X be a (weak) solution to the SDE
dX, = b(X,) dt + o(X:) dW,,

b € Lip, (R4 R9), o € Lip(RY; RY*¢) and bounded, a:= 00" s.t. A [ < a(x) <Al Vx

o Let L=b"V +} ;40,0 and suppose that for given f: RY — R the Poisson equation Lg = f
has some sufficiently regular solution L=1[f]

o By It5's formula: L[1(X,) — LA(X0) = [£ LLA(X.) ds + [£(VLUIF(X.)) T 0(X.) dW, and
hence

Jt F(X,) ds = J (VL) T o(X) AW, + L AX) — LX)
0 0

remainder
(loc.) martingale

~ If we have some control on L~1[f], VL™1[f] we can use martingale approximation for derivation of
concentration bounds

e employed in case d = 1 for exponentially ergodic diffusions in [AWS21; GP07] and for d > 1 and
periodic drift [NR20] in the context of drift estimation
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Poisson equation under subexponential drift assumptions

Assume ||b(x)|| <1+ ||x||* and for some g € (—1,1), t,A> 0,
(b(x), x/Ix[l) < —ellx|7%, [Ix]| > A. (D(q))
[DFG09] implies

1—q
[IP:(x,-) — llrv S exp (L||X‘|17q+) exp < — L’t1+qi> and J exp (L‘|XH17‘7+) u(dx) < co.
R4

[PVO1; BRS18] If pu(f) =0 and |[f(x)| <1+ ||x||", then for L7 [f](x) := —fgo P.f(x)dt we have
L7[f] € W2P(RY) for any p > 1, L~1[f] solves the Poisson equation and

loc

ILHAC S T+ [Ix[™9, IVLTHA) ] S 1+ [[x |,
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Poisson equation under subexponential drift assumptions

Assume ||b(x)|| <1+ ||x||* and for some g € (—1,1), t, A >0,
(b(x), x/Ix[l) < —ellx|7%, [Ix]| > A. (D(q))
[DFGO9] implies
1
1Pe(x,) = llrv S exp (UlxI~) exp (Ve ) and j exp (tx[[*) u(dx) < oo
R4

[PVO01; BRS18] If u(f) =0 and |f(x)| < “Ufl(x) = — [ P:f(x)dt we have
L7[f] € W2P(RY) for any p > 1, L~1[f] solves the Poisson equation and

loc

ILHAC S T+ [Ix[™9, IVLTHA) ] S 1+ [[x |,

Proposition [DFGO09], [TAWS23]
Given (D(q)) we have for v = 1+ q, ryq(t) ~ (14 t) Y= Q+a)/04a) £ (x) ~ 1 4 ||x|]y— 2+,

(Wi(ry,q(8)) V DIPe(x, ) = mllivwsor, o < C(WIL A+ [|Ix]1Y),

where ||v||f = sup‘g‘<f|v(g)\ and (W1, W,) is a pair of inverse Young functions (i.e.,
xy SYH(x) + ¥ (y))
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Continuous-time concentration result

Theorem [TAWS23]
Assume (D(q)), ||b(x)]| S 1+ |x||* and |f(x)| < £(1 + ||x|"). Let

1/(1—q4), n=0

1 n+k+l+q
>t e n > 0.

p(m, Kk, q) =

Then, there exists a constant ¢ > 0 s.t. for any x > 2/v/ T,

1

= LT F(X,)dt — u(f)‘ > x) < exp<— c(

Xﬁ)l/pmx,q))

Culf, Tox) = uw( S
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Continuous-time concentration result

Theorem [TAWS23]
Assume (D(q)), ||b(x)]| S 1+ |x||* and |f(x)| < £(1 + ||x|"). Let

1/(1—q4), n=0

P, K, q) =
I+ 7n+1:<7:1++q' n > 0.
Then, there exists a constant ¢ > 0 s.t. for any x > Z/ﬁ,
1 (7 T\ 1/p(n.x.q)
Culf, Tx) = uw( fJ F(X,) dt — u(f)‘ > x) <exp ( . c("\g) ! )
0

Poincaré, n =0 ‘ log-Sobolev, n < 2 ‘ subexponential, 1 > 0

le(l/o) log(1/5) log(1/5)2¢ (1 %4)
£ e €2

Table 1: Order of sufficient sample length W(¢, d) s.t. (¢, d)-PAC-bound P*(|ur(f) —u(f)|<e)>1—06
holds for T > W(¢, d)
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Discrete-time concentration result

Let observations (Xxa)k—1...» be given for some A < 1. Discrete MC-estimator:

A
HA(f) = nAZkaA

Then for Fl,( F)=t1[g F(X)dt, £ =F—pu(f), Ou(t) = [{*(LF(X,) — u(LF))ds
wi(t) = [ VF(X) To(X) dW,
A B NLAz n kA n
nA(HR (F) = Hia(£)) = w(LF) = 2 J(H)Acpk(t)dwzj ICAGELS
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Discrete-time concentration result

Let observations (Xxa)k—1..» be given for some A < 1. Define

1 n
=— kg f(Xia)A

Then forD-I] =t ] F(X)dt, f =F —p(F), Oult) = [F2(LF(X,) — n(LF)) ds,
wk(t) = t Vf(Xs) ( s)dW5y

nA2 L kA N kA

nA(HA (F) — Hoa () = u(LFf)— + J <Dk(t)dt+ZJ wy () dt.
2 =lk-a — J

Theorem [TAWS23]

Assume (D(q) )| S 1+|x||* and ||[DXF(x)|| < 1+ ||x||"%, k =0,1,2. Define o := (k+m1) V12,

andlety >1+q,r>1,st.vy—(1+q)>r(xV(1+q)/(r—1)). Then, for p > 2,

A max{(¥+2a-+1—q,)/2n1+1—q4} 1 1, n+k+l+g
HHnA(f)—LL(f)”Lp(Pu) <©<A+ ;p T=erE +ﬁp2+ =R ):: (D(H,A,P),

and

7/14

[P’“(IIHIf(f) — u(f) > ed(n, A, x)) <e ™ x>2.



Application




MCMC for moderately heavy tailed targets

e Langevin diffusion
dX, = —VU(X,) dt + V2dW,,

has invariant density 7t(x) oc exp(—U(x)) ~» sampling from 7 by numerical approximation of X,

e.g., Euler scheme

93 =8 — AVURWM) + V2AEna, 9 ~ X0, (E1) ~ N(0.1)

e abundant literature on sampling precision in TV or Wasserstein distance for U strongly convex or
modifications thereof [Dall7; DK19; DM17; DMM19] ~~ 7t(x) dx sub-Gaussian
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MCMC for moderately heavy tailed targets

e Langevin diffusion
dX, = —VU(X,) dt + V2dW,,

has invariant density 7t(x) oc exp(—U(x)) ~» sampling from 7 by numerical approximation of X,

e.g., Euler scheme

) =3P —AVURP)) + V2AEa11, 3 ~ X, (&n) ~ N(0,14)

9

n+

e abundant literature on sampling precision in TV or Wasserstein distance for U strongly convex or
modifications thereof [Dall7; DK19; DM17; DMM19] ~~ 7t(x) dx sub-Gaussian

e Assume instead that for some q € (0, 1)
(VUX), x/lIx]l) = «llx[I79, [Ix]] > A. (U(q))

~ N> 0: [gaexp (Ax[|)m(x)dx <00 <= g<1—gq
~ prototypical example: 7t(x) o< exp(—p||x||*~9) outside some ball around the origin
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Convergence guarantees

Proposition [TAWS23]
Assume (U(qg)) and that VU is bounded. Let f € C?(RY) s.t. |D¥f(x)|| < 1+ ||x|[™, k=0,1,2, and

consider the burn-in estimator

n+m
Him,a(f) =Hna(f) Z f(Xia).
k m+1
Then we have the following approximation guarantees:
sample size n burn-in m
g ¢ 2(1+q)/(1—q)
e-prec. sampling d[log[k/wez . ) -
2 (4(ng+(g+3)/2))/(1—q) “+q+2)/(1—q)
(¢, 8)-PAC bound |  ¢2%lesl1/8) TR 70 : dele to :

Table 2: Order of sufficient sample size n and burn-in m for (&, 5)-PAC bounds and sampling within e-TV

margin
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Lasso for parametrized drifts

For a given dictionary {\1, ..., Pn} of Lipschitz functions \;: R? — R?, let X be the strong solution to

N
dX, = bgo(X;) dt + 0(X;) dW,, where bgo(x) =Y 0%;(x).
i=1

Let h(x) = (Pa(x), .., hw(x), ¥(x) = (0 (x)b(x)) "o (x)b(x) and Ty = T3 [] WX, de.
Then for by := 10, negative log-likelihood given by

)
£7(0) = Lr(be) = 0TF,0 — 29#] $(Xe)Ta 1 (X,) dX..
0
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Lasso for parametrized drifts

For a given dictionary {{q, ..., Py} of Lipschitz functions \;: RY — RY, let X be the strong solution to
N
dX; = bgo(X) dt + o(X,)dW,, where bgo(x) =) 6%;(x).
i=1

Let (x) = (Ya(x), ..., Yu(x)), ¥(x) = (07 (x)(x)) o2 (x)wp(x) and Ty == T-1 [7 W(X,)dt.
Then for by =10, negative log-likelihood given by

)
£7(0) = Lr(be) = 0TF,0 — 29#] $(Xe)Ta 1 (X,) dX..
0

Goal
Study convergence guarantees of Lasso estimator

~

07 :=argmin {£7(8) +A[|6]|1},
0€eRN

under sparsity assumptions on 8°, i.e., ||0°]|o < So.

10/14



Assumptions and examples

We assume
L 3Ac>0,ge-1,1): (bgo(x), x/[Ix[l) < —¢llx[|79, |Ix[| > A;
2. Amax(¥(x)) S 1+ [|x]P;

3. Wy is positive definite Pgo-a.s.

Example 1: Ornstein—Uhlenbeck process: N = d?,
[GM19;
CMP20] bgo(x) = Agox.

If Ago is symmetric, negative definite ~» g = —1,1 = 1.

Example 2: N = 2d?,
bgo( ) AGOX - BQOX (v ae s ||XH 1+q

If Ago is singular and negative semi-definite and Bgo is negative definite ~» g =q,n =1
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Restricted eigenvalue property

e Proof of high probability bounds relies on having good control over the spectrum of the empirical
Gram matrix ¥r = + I(JT‘P(Xt) dt
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Restricted eigenvalue property

e Proof of high probability bounds relies on having good control over the spectrum of the empirical
Gram matrix ¥r = + L)T‘I’(Xt) dt

~~ control T
_ 1
inf 0TW,0 = inf —J o™ (Xe)bo (X)||* dt,
oes T

0es 0

for appropriate 8§ C RV in terms of Ay, (EW7]) = A%, via concentration inequality for
(unbounded) by and covering arguments

e for some sparsity dependent S(s), we obtain

2 Tw X;)noin
P, inf O7Fr0>58) > 1
for , 6n+20+3a 1
T > Ty(e, s, d,q,n)w{log (212s <d/\(%) S))—l—log(l/s)} o . ERER
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High probability bound

Theorem [TAWS23]

Suppose [|0°|o < sp and fix e € (0,1). If T > To(e/3, 50, d, q,1), then for the choice
A = +/log(N/e)/ T with probability at least 1 — ¢,

log(N/¢€)so

HaT*GOH%z = (§T*90)TWT(§T*90) < 7
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e we provide concentration inequalities for subexponentially ergodic diffusions and polynomially
bounded functions given continuous observations

e Concentration inequalities for sampled chains are derived from the continuous observation result

e we demonstrate implications on sufficient sample sizes for MCMC for moderately heavy tailed
targets as well as sparse estimation of parametrized diffusion models

Paper available as
“Trottner, L., Aeckerle-Willems, C., and C. Strauch. Concentration analysis of multivariate elliptic
diffusions. Journal of Machine Learning Research 24 (2023), paper no. 106, pp. 1-38."
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Thank you for your attention!
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