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Two classical singular control

problems



Framework (diffusions)

regular 1-dim. Itô diffusion

dX (t) = b(Xt) dt + σ(Xt) dWt ,

with assumptions that guarantee an invariant density

ρ(x) :=
1

Cσ2(x)
exp

(
2

∫ x b(y)

σ2(y)
dy

)
,
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Framework (diffusions)

• Singular control: Z = (Ut ,Dt)t>0, U,D non-decreasing, right-continuous and

adapted,

dXZ
t = b(XZ

t ) dt + σ(XZ
t ) dWt + dUt − dDt ,

• c continuous, nonnegative running cost function, qu, qd > 0.

Minimize

lim sup
T→∞

1

T
E

(∫T
0
c(XZ

s ) ds + quUT + qlDT

)
,
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Solution for singular control problem (diffusions)

For each (c , d), the corresponding reflection strategy has value

C (c , d) =
1

M(c , d)

(∫d
c
c(x) dM(x) +

qu
S ′(c)

+
qd

S ′(d)

)
,

M speed measure, S scale function

Theorem (Alvarez (2018))

Under some assumptions, the value for the singular problem is given by

Vsing = min
(c,d)

C (c , d).

and the reflections strategy for the minimizer (c∗, d∗) is optimal.
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Problem formulation (Lévy processes)

• X a Lévy process on R, E0X1 ∈ (0,∞)

• for impulse controls S = (τn, ζn)

X S
t = Xt −

∑
n; τn6t

(X S
τn− − ζn)

and for a nice C2 reward function γ solve

Vsing := sup
S

lim inf
T→∞ 1

T
Ex
∑

n:τn6T

(
γ
(
X S
τn,−

)
− γ (ζn)

)
(1)
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Solution for known dynamics (Lévy processes)

• For Ty = inf{t : Xt > y } define the auxiliary function

f (x) := lim
ε↘0

Exγ(XTx+ε) − γ(x)

ExTx+ε

(Long term average reward when reflecting in x)

• H ladder height process of X : subordinator with characteristics (dH ,ΠH)

• f via the extended generator:

f (x) = AHγ(x)

= dHγ
′(x) +

∫∞
0
(γ(x + y) − γ(x))ΠH(dy)

Theorem (C., Sohr (2020))

Let f be unimodal with maximizer θ∗ (+ technical assumptions). Then Vsing = f (θ∗)

and reflecting in θ∗ is optimal.
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• For Ty = inf{t : Xt > y } define the auxiliary function

f (x) := lim
ε↘0

Exγ(XTx+ε) − γ(x)

ExTx+ε

(Long term average reward when reflecting in x)

• H ladder height process of X : subordinator with characteristics (dH ,ΠH)

• f via the extended generator:

f (x) = AHγ(x)

= dHγ
′(x) +

∫∞
0
(γ(x + y) − γ(x))ΠH(dy)

Theorem (C., Sohr (2020))

Let f be unimodal with maximizer θ∗ (+ technical assumptions). Then Vsing = f (θ∗)

and reflecting in θ∗ is optimal.

5/25



Solution for known dynamics (Lévy processes)
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Data-driven approach to singular

control



Questions

• Which are the relevant characteristics of X to estimate approximately optimal

boundaries?

• How does controlling the process influence the estimation?
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Main observation (diffusion)

Crucial characteristics: b (assume σ to be known).

Singular problem: Vsing = minc,d∈K C (c , d).

C (c , d) =
1∫d

c m(x) dx

(∫d
c
c(x)m(x) dx +

qu
S ′(c)

+
qd

S ′(d)

)
,

=
1∫d

c ρ(x) dx

(∫d
c
c(x)ρ(x) dx +

quσ
2(c)

2
ρ(c) +

qdσ
2(d)

2
ρ(d)

)

Plug-in estimator: If ρ̂T is an estimator of ρ, then use

ĈT (c , d) :=
1∫d

c ρ̂T (x) dx

(∫d
c
c(x)ρ̂T (x) dx +

quσ
2(c)

2
ρ̂T (c) +

qdσ
2(d)

2
ρ̂T (d)

)
,

(̂c , d)T ∈ arg min
(c,d)

ĈT (c , d)
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Using estimators (diffusions)

Theorem (C., Strauch, T. (2021+))

Assume that we have a data-driven estimator ρ̂T for ρ. Then

Eb

[
Vsing − C ((̂c, d)T )

]
6 2 max

(c,d)

∣∣∣C (c , d) − ĈT (c , d)
∣∣∣

. Eb [‖ρ̂T − ρb‖L∞ ]

Need nonparametric bounds for Eb [‖ρ̂T − ρb‖L∞ ].
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Exploration vs. exploitation (diffusions)

Central Assumption in Stochastic Control

The dynamics of the underlying process is known.

What to do if this is not the case?
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Exploration vs. exploitation (diffusions)

Simple-minded idea:

• Estimate the optimal boundary based on the controlled process.

• Use the strategy based on the estimated boundary

Problem

Exploration vs. Exploitation!
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Exploration vs. exploitation (diffusions)

Combine Exploration- and Exploitation-Cycles...

• St : (random) time in exploration-cycles until t

• X ′ := (XK
S−1
s
)s>0 is a diffusion process

• In the exploitation cycles, use the estimated boundaries based on the information

obtained in the exploration cycles.
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Exploration vs. exploitation (diffusions)

Theorem (C., Strauch, T. (2021+))

Assume that we have a data-driven estimator ρ̂T for ρ with

E0
b [‖ρ̂T − ρb‖L∞ ] ∈ O

(√
logT

T

)
and consider S such that ST ≈ T 2/3. Then, the regret (difference of optimal reward

rate and the expected data driven reward rate) is of order O

(√
logT T−1/3

)
.
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Strategy for Lévy processes

• no exploration/exploitation problem by spatial homogeneity of Lévy processes  

recover path from controlled process following the same distribution as path from

the uncontrolled process by “undoing” controls

• All we need is a good estimator f̂T of f = AHγ wrt. sup-norm risk

 continuously update estimated boundary via greedy strategy θ̂T = supx f̂T (x)

Theorem (C., Strauch, T. (2021+)

Assume that θ∗ ∈ D for some open bounded set D and we have a data-driven

estimator f̂T for f satisfying

E0

[∥∥∥f̂T − f
∥∥∥
L∞(D)

]
∈ O(η(T )),

for some η ∈ o(1). Then, the regret is of order O(η(T )) as well.
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Construction of estimators



Invariant density estimation for diffusions

• missing piece for data-driven estimator of optimal reflection boundaries: estimator

ρ̂T of stationary density ρ with sup-norm rate O(
√

logT/T )

• assumption: continuous record XT = (Xt)t∈[0,T ] available

• classical candidate: kernel density estimator

ρ̂h,T (x) =
1

hT

∫T
0
K

(
x − Xt

h

)
dt, x ∈ R
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Controlling the sup-norm risk

Two approaches:

1. make use of specific structure of diffusions by employing local time and

continuous martingale techniques (Aeckerle-Willems and Strauch, 2021)

2. use mixing properties to control the long-time transitional behavior and

heat-kernel bounds on the transition density for the short time behavior

(Dexheimer, Strauch, T., 2021+)

Both approaches allow to handle deviation inequalities and moment bounds for

suprema of empirical processes of the form

sup
g∈G

∣∣∣ 1√
T

∫T
0
g(Xs) ds︸ ︷︷ ︸

=:GT (g)

∣∣∣, G ⊂ L∞(R),

via Talagrand’s generic chaining device
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Controlling the sup-norm risk

For (general) stationary, exponentially β-mixing Markov processes with inv. distribution µ, i.e.,

β(t) =
∫
‖Pt(x , ·) − µ‖TV µ(dx) . exp(−κt), we obtain for mT 6 T/4, τ ∈ [mT , 2mT ],(

Eµ

[
sup
g∈G

|GT (g)|
p

])1/p

6 C1

∫∞
0

logN
(
u,G, 2mT√

T
d∞) du + C2

∫∞
0

√
logN(u,G, dG,τ) du

+ 4 sup
g∈G

(2mT√
T
‖g‖∞c1p + ‖g‖G,τc2

√
p +

1

2
‖g‖∞cκ√T e−

κmT
p

)
,

where dG,τ(f , g) = Var(Gτ(f − g)).

With the decomposition

Eµ
[∥∥ρ̂h,T − ρ

∥∥
L∞(D)

]
= ‖Eµ[ρ̂h,T (·)] − ρ‖L∞(D) + Eµ

[∥∥ρ̂h,T − Eµ[ρ̂h,T (·)]
∥∥
L∞(D)

]
=: B+V,

we can use the general result to bound the statistical error V via

V =
1√
Th

Eµ

[
sup
g∈G

|GT (g)|

]
, G =

{
K
(
x−·
h

)
− µ

(
K
(
x−·
h

))
: x ∈ D ∩Q

}
.

The bias B is taken care of by assuming ρ|D ∈ HölderD(β) such that B . hβ.
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Central statistical result for the diffusion case

Proposition (C., Strauch, T. (2021+))

Suppose that ρ|D ∈ HölderD(β+ 1), β > 0, and K be of order bβ+ 1c. Under

standard assumptions on b,σ guaranteeing

1. exponential ergodicity of the marginals, i.e., ‖Pt(x , ·) − µ‖TV . V (x)exp(−κt);

2. heat kernel bound, i.e., supx ,y∈R pt(x , y) . t−1/2, t ∈ (0, 1),

it follows for the smoothness independent choice h ≡ h(T ) = log2 T/
√
T that

E0
[∥∥ρ̂h,T − ρ

∥∥
L∞(D)

]
∈ O(

√
logT/T ).

17/25



Statistical challenge in the Lévy case

• missing piece: estimator of generator function f = AHγ, where H is ascending

ladder height process

• Ht = XL−1
t

, where L is local time at the supremum, i.e., local time of reflected

process Yt = sups6t Xs − Xt in 0

Problem

L can generally not be observed, even with a continuous record XT = (Xt)t∈[0,T ]

available

 plug-in type estimator not feasible for AHγ

• problem formulation is ergodic in nature  how can this be reflected in the

statistical analysis, even though Lévy processes are not ergodic in time?
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Estimation strategy

• Basic observation:

f (x) = AHγ(x) = dHγ
′(x) +

∫∞
0+

(γ(x + y) − γ(x))ΠH(dy) =

∫∞
0

E0[X1]γ
′(x + y)µ(dy),

where

µ(dy) =
1

E0[H1]

(
dHδ0(dy) + 1(0,∞)(y)ΠH((y ,∞)) dy

)
, y > 0,

(note: E0[H1] = E0[X1] by chosen scaling of local time such that E0[L−1
1 ] = 1)

• µ is associated to overshoots of X : Let Ox := XTx
− x with Tx := inf{t > 0 : Xt > x}.

Then, Ox =⇒ µ as x →∞.

• Even better: O = (Ox)x>0 is a Feller Markov process and µ is unique stationary

distribution of O

• First step: consider spatial mean estimator

f̃Y (x) =
1

Y

∫Y
0

E0[X1]γ
′(x + Oy ) dy ,

based on sample (XTy
)y∈[0,Y ]

19/25
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Central convergence results

Theorem (Döring, T. (2021+))

Suppose that Π|(a,b) � Leb|(a,b) for some (a, b) ⊂ R+. Then, Ox
TV−→ µ as x →∞.

If moreover
∫∞

1 eλx Π(dx) <∞, then X is even exponentially ergodic.

Use this together with uniform moment bounds on Markovian integral functionals to

obtain the following for the mean estimator f̃Y = 1
Y

∫Y
0 E0[X1]γ

′(x + Oy ) dy :

Proposition (C., Strauch, T. (2021+))

Given the above assumptions, we have for any bounded open set D ⊂ R,

E0
[∥∥f̃Y − f

∥∥
L∞(D)

]
.

1√
Y

.
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From spatial to temporal estimator

• So far: spatial mean estimator f̃Y based on overshoots up to level Y

 how to translate this into temporal estimator f̂T based on Lévy sample (Xt)t∈[0,T ]

up to time T?

• good candidate: f̂T (x) =
1
XT

∫XT

0 γ′(x + Oy ) dy1(0,∞)(XT ).

• Then, for any ε > 0,

E0
[∥∥f̂T − f

∥∥
L∞(D)

]
. E0

[∥∥f̃E0[X1]T − f
∥∥
L∞(D)

]
+

ε

E0[X1]
+ P0

(∣∣∣XT

T
− E0[X1]

∣∣∣ > ε)
6

1√
E0[X1]T

+
ε

E0[X1]
+ P0

(∣∣∣XT

T
− E0[X1]

∣∣∣ > ε).

 need nonasymptotic controls on deviation from the mean
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Convergence speed of LLN for Lévy processes

• Direct result: use Markov inequality + Burkholder–Davis–Gundy inequality in case

E0[|X1|
p] <∞ for some p > 2 to obtain

P0
(∣∣∣XT

T
− E0[X1]

∣∣∣ > T−1/(2(1+p−1))
)
6 T p/(1+2(1+p−1))T−pE0

[
|XT − E0[XT ]|

p
]

6 T−1/(2(1+p−1)).

• Alternatively, if jumps are bounded, use Chernov-type argument + convenient

form of char. exponent Ψ(θ) = log E0[exp(iθX1)] to obtain

Theorem (C., Strauch, T. (2021+))

Suppose that X has bounded jumps. Then, there exists β > 0 and T (p) > 0 for

p > 0 such that for any T > T (p),

P0
(
|XT − E0[XT ]| >

√
βpT logT

)
6 2T−p/2.
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Putting the pieces together

Theorem (C., Strauch, T. (2021+))

Under regularity and exponential moment assumptions on Π|(0,∞) such that O is

exponentially ergodic, we have

E0
[∥∥f̂T − f

∥∥
L∞(D)

]
∈ O

(
T−1/(2(1+p−1)

)
,

provided that
∫
|x |>1|x |

p Π(dx) <∞ for some p > 2 and

E0
[∥∥f̂T − f

∥∥
L∞(D)

]
∈ O

(√
logT/T

)
,

if Π has bounded support. In particular, if θ∗ ∈ D, the regret of the greedy strategy

θ̂T = supx f̂T (x) for the Lévy control problem is of order O(T−1/(2(1+p−1))) when X1

has p-th moment and of order O(
√

logT/T ) when jumps are bounded.
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