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Motivation:

“Creating noise from data is easy; creating data from noise is generative modeling.”

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.



Generative modelling

Setup: identically distributed samples X1, … ,Xn with unknown distribution P are given

Goal: develop sampling algorithms that do not rely on structural assumptions on P

 involves (implicitly) learning the underlying distribution of a dataset to generate new samples that
a) follow approximately the same distribution as the training data;
b) should not be drawn from the training data set

 essential in applications like image synthesis, text generation, data augmentation …
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Noise transformation

Inverse transform sampling: for an ℝ-valued random variable X with cdf F and U ∼ 𝒰((0, 1)), we have

F−1(U)
d
= X for the left-inverse F−1 of F

• we don’t know F , but are only given samples X1, … ,Xn
d
= X

• naïve approach: replace F by empirical cdf F̂ (x) = #{Xi∶Xi≤x }
n

and set X̂ = F̂−1(U) for an
independent U ∼ 𝒰((0, 1))

• if X(1), … ,X(n) is an increasing ordering of the data set and U ∈ [k/n, (k + 1)/n), then X̂ = X(k)
⇝ algorithm learns the empirical distribution ℙn = 1

n
∑n

i=1 𝛿Xi ⇝ overfitting/“no creativity”

To evaluate the performance of an algorithm that outputs X̂ = T̂ (U), for some T̂ ∈ 𝜎(X1, … ,Xn) and
independent noise U we can

• analyse the rate of convergence of

𝔼[d(T̂♯ℙU , ℙX )], d some probability distance or divergence

• study distance of generated distribution to empirical distribution ℙn
• inspect samples visually
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Langevin diffusion models

Langevin MCMC algorithm: given target density p0 simulate diffusion

dZt = ∇ log p0(Zt ) dt + √2 dWt

and output ZT for T “sufficiently large”: if p0 is nice enough, then Zt ⟶ p0 (in TV, KL, Wasserstein etc.)

• bad idea: estimate p0 by some ̂p and replace ∇ log p0 by ∇ log ̂p (explicit approach)
• implicit approach: consider p0,𝜎2 = p0 ∗ 𝜙0,𝜎2 for a Gaussian density 𝜙0,𝜎2 (𝜎2 small) instead and

target score ∇ log p0,𝜎2 directly
• denoising score matching: let X ∼ p0, X𝜎 = X + 𝜎𝜀 ∼ p0 ∗ 𝜙0,𝜎2 , for indep. noise 𝜀 ∼ 𝒩(0, 𝕀d )

∇ log p0,𝜎2(x) =
∫ ∇x𝜙0,𝜎2(x − y) p0(dy)

p0,𝜎2(x)
= ∫∇x log 𝜑0,𝜎2(x − y)

𝜙0,𝜎2(x − y) p0(dy)
p0,𝜎2(x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=ℙ(X∈dy ∣X𝜎2=x)

= 𝔼[∇ log 𝜙X ,𝜎2(X𝜎2) ∣ X𝜎2 = x]

ERM: ̂s ∈ argmin
s∈𝒮

1
M

M

∑
j=1

‖s(Xij ,𝜎2) − ∇ log 𝜙Xij ,𝜎2(Xij ,𝜎2)‖
2 = argmin

s∈𝒮

1
M

M

∑
j=1

‖s(Xij ,𝜎2) +
1

𝜎
𝜀ij ‖

2,

where the Xij are uniformly sampled from X1, … ,Xn and Xij ,𝜎2 = Xij + 𝜎𝜀ij
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Denoising diffusion models

• provide an iterative generative algorithm to create new samples that approximately match the
target distribution p0

• general idea: find a stochastic process that perturbs p0 to a new distribution pT such that

1) pT or a good approximation thereof is easy to sample from, and
2) the perturbation is reversible in the sense that we know how to simulate the time-reversed

process

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.
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Denoising Diffusion Models

• for some fixed time T > 0 consider the forward model

dXt = b(t ,Xt ) dt + 𝜎(t ,Xt ) dWt , t ∈ [0, T ],X0 ∼ p0

• letting pt (x) = ∫ p0,t (y , x) p0(dy) be the marginal densities of (Xt ), the time reversal ⃗X t = XT−t
solves

d ⃗X t = −b(T − t , ⃗X t ) dt + 𝜎(T − t , ⃗X t ) dW t , t ∈ [0, T ], ⃗X 0 ∼ pT ,

where

bi(t , x) = bi(t , x) −
1

pt (x)

d

∑
j,k=1

𝜕
𝜕xj

(pt (x)𝜎ik(t , x)𝜎jk(t , x))

= bi(t , x) − (∇ ⋅ Σ(t , x))i − (∇ log pt (x))i , i = 1, … , d , Σ = 𝜎𝜎⊤
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⇝ time-reversed process solves a time-inhomogeneous SDE, now with drift −b(T − ⋅, ⋅) involving the
score ∇ log pt , which depends on the unknown data distribution p0

⇝ score needs to be estimated from the data
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Denoising score matching

• denoising score matching:

∇ log pt (x) =
∫ ∇xp0,t (y , x) p0(dy)

pt (x)
= ∫∇x log p0,t (y , x)

p0,t (y , x) p0(dy)
pt (x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=ℙ(X0∈dy ∣Xt=x)

= 𝔼[∇2 log p0,t (X0,Xt ) ∣ Xt = x]

and thus
𝔰 ≔ ∇ log pt ∈ argmin

s meas.
𝔼[‖s(Xt ) − ∇2 log p0,t (X0,Xt )‖2]

⇝ given data (X i
0)i∈[n]

iid∼ p0 define the denoising score estimator

𝔰̂ ∈ argmin
s∈𝒮

1
n

n

∑
i=1

𝔼X i
0
[ ∫

T

T
‖s(t ,Xt ) − ∇2 log p0,t (X0,Xt )‖2 dt],

where 0 < T ≪ T and 𝒮 is an approximating function class, e.g. space-time neural networks
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Generative process

On [0, T − T ], simulate

dYt = (−b(T −t ,Yt )+∇⋅Σ(T −t ,Yt )+Σ(T −t ,Yt )𝔰̂(T −t ,Yt )) dt+𝜎(T −t ,Yt ) dWt , ℙY0(dy) ≈ pT (y) dy

Output:

YT−T
d
≈ ⃗XT−T = XT

d
≈ X0
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Minimax optimality of diffusion models
Assumptions on data distribution p0 with support ℳ:

• Leb(ℳ) > 0, ℳ bounded, p0|ℳ ≥ m > 0 and 𝛽-smooth: Oko, Akiyama, Suzuki (ICML ’23), Dou,
Kotekal, Xu and Zhou (’24+) [d = 1, no log-factors], Holk, Strauch, LT (’25+) [reflected models]

• d = 1, ℳ = ℝ, p0 not lower bounded: Zhang et al. (’25, ICML)

• ℳ bounded and ⊂ linear subspace: Oko, Akiyama, Suzuki (ICML ’23), Chen et al. (ICML ’23)

• ℳ is a d∗-dimensional submanifold: Tang and Yang (AISTATS ’24), Azangulov, Delegiannidis and
Rousseau (’24+) [rates adapt to intrinsic dimension d∗]

• log p0(x) = ∑𝑱⊂[d],|𝑱 |≤d∗ f𝑱(x𝑱), for f𝑱 𝛽-Hölder: Kwon et. al (’25+), Fan, Gu and Li (’25+)

• … [?] 8/18
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Some fundamental observations

• time reversal at deterministic time T forces the backward process to be time-inhomogeneous

• initialising the generative process in a distribution that is not close to ℙXT and simulating for T − T
time units will not give useful results ⇝ algorithm is not adaptive to the noise level in the data

• if p0 has low-dimensional support ℳ, for small t and x close to ℳ, ∇ log pt (x) is approximately
orthogonal to ℳ (Stanczuk et al., ICML ’24)
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Homogeneous time reversal

• Markov property: “the past and future of a Markov process are conditionally independent given
the present” ⇝ time-reversed Markov processes are Markov

• to ensure that a homogeneous Markov process remains homogeneous under time reversal, we
need to reverse at a suitable random (life)time 𝜁. This can be

• a randomised stopping time such as an independent exponential time;
• a last exit time;
• a first hitting time;
• any terminal time, that is, any stopping time T such that T = t + T ∘ 𝜃t on {T > t}

• retaining the strong Markov property under time reversal is a bit more tricky:
B

C

A
0

B

C

A
0
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h-transforms and time reversal

h-transform
For a possibly killed, homogeneous strong Markov process X with state space S , let h be an excessive
function, that is

𝔼x [h(Xt )] ≤ h(x) and lim
t→0

𝔼x [h(Xt )] = h(x).

Then,

Ph
t f (x) = 𝔼x [

h(Xt )
h(x)

f (Xt )1{Xt∈S}]1(0,∞)(h(x)), f ∈ ℬb(ℝd ),

defines a sub-Markov semigroup. The corresponding Markov process X h is strong Markov and is
called h-transform of X .

• suppose that X is a continuous and self-dual Feller process (i.e., its generator satisfies A = A∗)

• if X h has a finite killing time 𝜁, then the time-reversed process ⃗X h
t = X h

𝜁−t is homogeneous, strong

Markov and is a ⃗h-transform of X .
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h-transforming a killed diffusion

• consider a symmetric diffusion process

dXt = b(Xt ) dt + 𝜎(Xt ) dWt ,

with invariant measure m and let Z be its version killed at an independent exponential time with
parameter r > 0

• as an excessive function for Z use

h(x) = ∫Gr (x , y) 𝜅(dy)

for the Green kernel Gr (x , y) = ∫∞0 e−rtpt (x , y) dt and a representing measure 𝜅
• 𝜅(dy) = r dy ⇝ h = 1 and Z h = Z
• 𝜅(dy) = 1

Gr (x0,y)
𝛽(dy) ⇝ Z conditioned to have distribution 𝛽 before killing if started in x0

• Z is a killed Brownian motion and 𝜅(dy) = 𝜎R(dy) for the surface measure 𝜎R of an R-sphere 𝕊d−1(R) ⇝
Z h is killed at last exit from 𝕊d−1(R)
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A time-homogeneous generative process
Proposition (Christensen, Kallsen, Strauch and LT (2025+))

1. Z h is an Itô-diffusion with dynamics

dZ h
t = (b(Z h

t ) + Σ(Xt )∇ log h(Xt )) dt + 𝜎(Z h
t ) dWt

outside supp 𝜅 and its distribution at the lifetime is given by

ℙx (Z h
𝜁− ∈ dy) =

Gr (x , y)
h(x)

𝜅(dy)

2. Let 𝛼 = ℙZ
h
0 . Then ⃗Z h

t is an ⃗h-transform of Z with initial distribution ℙ𝛼(Z h
𝜁− ∈ dy) and

⃗h(x) ≔ ∫
Gr (x , y)
h(y)

𝛼(dy).

In particular, ⃗Z h has dynamics

d ⃗Z h
t = (b( ⃗Z h

t ) + Σ( ⃗Z h
t )∇ log ⃗h( ⃗Z h

t )) dt + 𝜎( ⃗Z h
t ) dW t ,

outside supp 𝛼 ≕ ℳ and ℙ𝛼(
⃗Z h
𝜁− ∈ dy ∣ ⃗Z h

0 = x) = Gr (x ,y)
⃗h(x)h(y)

𝛼(dy) for ℙ𝛼(Z h
𝜁− ∈ ⋅)-a.e. x .
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A time-homogeneous generative process

Idealised algorithm:

1. Initialise Z
⃗h

0 ∼ 𝛽h ≈ ℙ𝛼(Z h
𝜁−)

• for ergodic forward process with stationary distribution 𝜇 and small exponential killing rate r > 0, choose
𝛽h = 𝜇 [↭ ergodic diffusion model]

• for exponentially killed BM with small killing rate r > 0, choose 𝛽h = Laplace(0, (2r)−1/2𝕀d ) [↭ variance
exploding diffusion model]

• for 𝜅(dy) = 1

Gr (x0,y)
𝛿z , choose 𝛽h = 𝛿z

2. Simulate diffusion Z ⃗h until killing time and output Z
⃗h

𝜁−

Requirements for implementation

1. learn ∇ log ⃗h (only a function in space – no time component);

2. learn killing time 𝜁 of ⃗Z h
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Learning to kill

Polarity hypothesis

Assume that ℳ = supp 𝛼 is polar for X , i.e., for any x ∈ ℝd , ℙx (inf{t > 0 ∶ Xt ∈ ℳ} < ∞) = 0.

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Under the polarity hypothesis, the backward process ⃗Z h is killed at first entrance into ℳ.

Possible strategies to estimate a 𝛿-fattening ℳ𝛿 = {x ∶ dist(x ,ℳ) ≤ 𝛿} given data X 1, … ,X n iid∼ 𝛼 and
an estimator 𝔰̂ of 𝔰 ≔ ∇ log ⃗h:

• explicit plug-in approach: estimate ℳ𝛿 directly or indirectly by setting ℳ̂𝛿 = (ℳ̂)𝛿; then set
̂𝜁 ≔ inf{t ≥ 0 ∶ Z 𝔰̂

t ∈ ℳ̂𝛿}
• implicit approach: use explosive behaviour of 𝔰 as x → ℳ

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Suppose that ℳ is polar for X and Y solving dYt = 𝜎(Yt ) dBt . Then, it a.s. holds that

𝜁 = inf {t ≥ 0 ∶ sup
s≤t

|𝔰( ⃗Z h
s )| = ∞} = inf {t ≥ 0 ∶ ‖𝔰( ⃗Z h)‖L2([0,t]) = ∞}.
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Denoising score matching

• for ℙ𝛼(Z h
𝜁− ∈ ⋅)-a.e. x

𝔰(x) = ∇ log ⃗h(x) = 1
⃗h(x)

∫ ∇xGr (x , y)
1

h(y)
𝛼(dy) = ∫∇x logGr (x , y)

Gr (x , y)
⃗h(x)h(y)

𝛼(dy)

= 𝔼[∇x logGr (x ,Z
⃗h

𝜁−) ∣ Z
⃗h

0 = x]

= 𝔼𝛼[∇x logGr (x ,Z h
0 ) ∣ Z h

𝜁− = x]

• this implies that on ℝd ∖ℳ𝛿, 𝔰 agrees ℙ𝛼(Z h
𝜁− ∈ ⋅)-a.e. with the minimiser of

ℬ(ℝd ; ℝd ) ∋ s ↦ 𝔼𝛼[‖s(Z h
𝜁−) − ∇ logGr (Z h

0 ,Z h
𝜁−)‖

21{‖Z h
𝜁−−Z

h
0 ‖>𝛿}

]

• note that if Z h = Z , then 𝜁 ∼ Exp(r) independent of X , Z𝜁− = X𝜁 has full support and we have

𝔼𝛼[‖s(Z h
𝜁−)−∇ logGr (Z h

0 ,Z h
𝜁−)‖

21{‖Z h
𝜁−−Z

h
0 ‖>𝛿}

] = r𝔼𝛼[ ∫
𝜁

0
‖s(Z h

t )−∇ logGr (Z h
0 ,Z h

t )‖
21{‖Z h

t −Z h
0 ‖>𝛿}

dt]
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Projection learning

• we don’t have to start the backward process approximately in ℙ𝛼(Z h
𝜁− ∈ dy): it will always be killed

on the data support ℳ and different initialisations will yield different output distributions
supported on ℳ⇝ natural conditioning

• a natural question is therefore what happens if we don’t start the generative process from pure
noise but something more informative, say a masked or moderately noised picture

• it turns out that the natural conditioning aspect entails a blessing of dimensionality
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Projection learning

Let Z be an exponentially killed Brownian motion. Then,

⃗h(x) = ∫Gr (x , y) 𝛼(dy), Gr (x , y) = 2(2𝜋)−d/2r( √2r
|x − y | )

d−2
2 K d−2

2

( √2r
|x − y | )

.

For large d ,

∇ log ⃗h(x) ≈ d
∫ x−y
|x−y |d

𝛼(dy)

∫|x − y |2−d 𝛼(dy)
and thus, if there is a unique projection x∗ ∈ argminy∈ℳ|x − y | of x onto ℳ, then

∇ log ⃗h(x) ≈ d
x∗ − x
|x∗ − x |2

= d
sign(x∗ − x)
|x∗ − x |

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Let 𝛿, 𝜀 > 0 and fix an observation x ∈ ℝd . If 𝛼(B(x , r)) > 𝜀 for some ball B(x , r) with radius r > 0
around y , then

ℙ(Z ⃗h
𝜁− ∈ ℳ ∩ B(x , (1 + 𝛿)r) ∣ Z ⃗h

0 = x) ≥ 1 − 1
𝜀 (1 + 𝛿) 2−d .
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Projection learning

Consider now estimators 𝔰̂n , an independent Brownian motion W and let Ẑ 𝔰̂n be the process solving

dẐ 𝔰̂n
t = 𝔰̂n(Ẑ

𝔰̂n
t )1{t≤ ̂𝜁 } dt + 1{t≤ ̃𝜁 } dWt , ̂𝜁 ≔ inf {t ≥ 0 ∶ ‖Ẑ 𝔰̂n‖L2[0,t] > M}.

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Fix an observation x ∈ ℝd . Suppose that

• for any ̃𝛿 , 𝛿 , 𝜀 > 0 it holds for sufficiently large n that

ℙ(‖(𝔰̂n(Z
⃗h) − 𝔰(Z ⃗h))1{Z ⃗h∉ℳ ̃𝛿}

‖
L2(𝜁 )

> 𝛿 |Z ⃗h
0 = x) < 𝜀

• for any n ∈ ℕ and ̃𝛿 > 0, the function 𝔰̂n is L ̃𝛿-Lipschitz on ℳc
̃𝛿

Let 𝛿, 𝜀, ̃𝛿 , ̃𝜀 > 0. If 𝛼(B(x , r)) > 𝜀, then, for sufficiently large M > 0 and n ∈ ℕ,

ℙ(Ẑ 𝔰̂n
̂𝜁
∈ ℳ ̃𝛿 ∩ B(x , (1 + 𝛿)r) | Ẑ 𝔰̂n

0 = x) > 1 − 1
𝜀 (1 + 𝛿) 2−d − ̃𝜀.
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Thank you for your attention!
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