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Motivation:

“Creating noise from data is easy; creating data from noise is generative modeling.”

S £

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.



Generative modelling

Setup: identically distributed samples X, ..., X,, with unknown distribution P are given

Goal: develop sampling algorithms that do not rely on structural assumptions on P

~ involves (implicitly) learning the underlying distribution of a dataset to generate new samples that

a) follow approximately the same distribution as the training data;
b) should not be drawn from the training data set

~ essential in applications like image synthesis, text generation, data augmentation ...
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Noise transformation

Inverse transform sampling: for an R-valued random variable X with cdf F and U ~ U((0, 1)), we have
d
F~'(U) = X for the left-inverse F~' of F

we don’t know F, but are only given samples Xi,..., X, 4 =X
naive approach: replace F by empirical cdf F(x) = #{X i
independent U ~ U((0, 1))

if X(1),.-» X(m) is an increasing ordering of the data set and U € [k/n,(k +1)/n), then X= Xk

q q e 5 1 —r « PR
algorithm learns the empirical distribution P, = - 2771 Jx, ~ overfitting/“no creativity
5 L=

and set X = F-1(U) for an
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q q e 5 1 —r « PR
~> algorithm learns the empirical distribution P, = - 2771 Jx, ~ overfitting/“no creativity
5 L=

and set X = F-1(U) for an

To evaluate the performance of an algorithm that outputs X = T(U), for some T € o(Xis..., X,) and
independent noise U we can

- analyse the rate of convergence of

]E[d(/fg]PU,]PX)], d some probability distance or divergence

- study distance of generated distribution to empirical distribution P,,
- inspect samples visually
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Langevin diffusion models

Langevin MCMC algorithm: given target density p, simulate diffusion
dz, = Vlog po(Zy) dt + V2dW,

and output Z7 for T “sufficiently large”: if p, is nice enough, then Z; — p, (in TV, KL, Wasserstein etc.)
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M M
R .1 .1 1
ERM: se argen(;m v ;HS(X,-PJz) —Vlog ‘/J’X;j,az(Xij,ch)"Z = argsgergm v ;HS(X,-],,Uz) + ;E,‘J,”z,

where the Xij are uniformly sampled from X, ..., X,, and X,-j,[,z = X,-j +ogj;
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Denoising diffusion models

- provide an iterative generative algorithm to create new samples that approximately match the
target distribution p,
« general idea: find a stochastic process that perturbs p, to a new distribution pr such that

1) pr or a good approximation thereof is easy to sample from, and
2) the perturbation is reversible in the sense that we know how to simulate the time-reversed

Forward SDE (data — nmse)
.7 dx = f(x,t)dt + g(t —)@
score  function
dx = [f(x,t) — ¢* ()V logp,(xdt+g(t @

Reverse SDE (noise — data)

process

ont

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. /CLR.
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Denoising Diffusion Models

« for some fixed time T > 0 consider the forward model

dX; = b(t, X dt + o(t, X)) dW;,  tE€[0,T], Xo ~ po
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Denoising Diffusion Models

« for some fixed time T > 0 consider the forward model
dX; = b(t, X dt + o(t, X)) dW;,  t€[0,T], X ~ po
« letting p;(x) = [ po¢(y, x) po(dy) be the marginal densities of (X;), the time reversal )?t = X7_¢

solves

«

d)((_t = —E(T— t,)‘(_t)dt‘{‘O'(T— t,)?t)th, te [0, T],XO ~ PT>

where
= 13
bi(t,x) = bi(t.X) ~ —7= ij21 a—xj(pmm(t, X (t, X))

= bi(t,x) — (V-2(t,x)); — (Vlog ps(x));, i=1,...,d, X =00"

~> time-reversed process solves a time-inhomogeneous SDE, now with drift —b(T =) involving the
score V log p;, which depends on the unknown data distribution pg

~» score needs to be estimated from the data
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Denoising score matching

» denoising score matching:

Vy , d
V log py(x) = I po’tg(j)) B valogpo,t(y, X)

Po,t(y, x) po(dy)
pe(x)
| S ——
=P(X,Edy|X;=x)
= E[V; log po +(Xo, Xp) | X¢ = x]

and thus
8 := Vlog p; € argmin E[[s(X;) — V5 log po ¢(Xo, X)I?]

S meas.
~ given data (Xg)ie[n] E po define the denoising score estimator

n T
a 1
dcargmin - S B[ | 1stt. ) - V2 10 pu, O X0 ],
i=1 T

seS

where 0 < T « T and 8 is an approximating function class, e.g. space-time neural networks
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Generative process

On [0, T — T], simulate
dY; = (=b(T—t, Y)+V-S(T—t, Y)+2(T—t, Y)3(T—t, V) dt+o(T—t,Y)dW,, PY(dy) = pr(y)dy

Output:
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Generative process

On [0, T — T|, simulate
dY; = (=b(T—t, Y)+V-S(T—t, Y)+3(T—t, Y)3(T—t, Yy)) dt+o(T—t, Y)dW,, PYo(dy) = pr(y)dy
Output:

Minimax optimality of diffusion models
Assumptions on data distribution py with support /:

« Leb(#) > 0, 4 bounded, py| > m > 0 and f-smooth: Oko, Akiyama, Suzuki (/ICML 23), Dou,
Kotekal, Xu and Zhou (°24+) [d = 1, no log-factors], Holk, Strauch, LT ("25+) [reflected models]

o« d=1, =R, py not lower bounded: Zhang et al. ("25, ICML)

» M bounded and C linear subspace: Oko, Akiyama, Suzuki (/ICML ’23), Chen et al. (ICML ’23)

« M is a d*-dimensional submanifold: Tang and Yang (AISTATS °24), Azangulov, Delegiannidis and
Rousseau ('24+) [rates adapt to intrinsic dimension d*]

log po(x) = ch[d] |]\gd*f](X])’ for f; f-Holder: Kwon et. al ("25+), Fan, Gu and Li (°25+)
. ... [?]
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Generative process

On [0, T — T], simulate

dYy = (=b(T—t, Y)+V-2(T—t, Y)+3(T—-t, Y)8(T—t, Y))dt+o(T—t, Y)dW;, PY(dy) = pr(y)dy

Output:
d d

Some fundamental observations

- time reversal at deterministic time T forces the backward process to be time-inhomogeneous

initialising the generative process in a distribution that is not close to PXT and simulating for T — T
time units will not give useful results ~» algorithm is not adaptive to the noise level in the data

« if py has low-dimensional support .Z, for small ¢t and x close to .#, V log p;(x) is approximately
orthogonal to ./ (Stanczuk et al., ICML *24)
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Homogeneous time reversal

« Markov property: “the past and future of a Markov process are conditionally independent given
the present” ~» time-reversed Markov processes are Markov
« to ensure that a homogeneous Markov process remains homogeneous under time reversal, we
need to reverse at a suitable random (life)time ¢ This can be
« arandomised stopping time such as an independent exponential time;
« alast exit time;
« a first hitting time;
- any terminal time, that is, any stopping time T such that T =t + T < 6; on {T > t}
« retaining the strong Markov property under time reversal is a bit more tricky:
B B
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h-transforms and time reversal

h-transform
For a possibly killed, homogeneous strong Markov process X with state space S, let h be an excessive

function, that is
E,[h(X)] < h(x) and H?)EX[h(Xt)] = h(x).

Then,
h(X)

h(x)

defines a sub-Markov semigroup. The corresponding Markov process X" is strong Markov and is

PEF(x) = By ZEEF 0 xes) [ 1000y (BOO),  F € By(R),

called h-transform of X.

« suppose that X is a continuous and self-dual Feller process (i.e., its generator satisfies A = A*)

« if X/ has a finite killing time ¢, then the time-reversed process X/ = Xévh_t is homogeneous, strong

Markov and is a A-transform of X.
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h-transforming a killed diffusion

- consider a symmetric diffusion process
dXt = b(Xt) dt + O'(Xt) d Wt?

with invariant measure m and let Z be its version killed at an independent exponential time with
parameter r > 0

« as an excessive function for Z use
) = [ 6.0 y)xdy)

for the Green kernel G,.(x, y) = fgo e "p:(x, y) dt and a representing measure k
« k(dy)=rdy~» h=1and Z" =7

. k(dy) = c (1 S p(dy) ~» Z conditioned to have distribution f before killing if started in x,
X0,y
« Zis a killed Brownian motion and k(dy) = ogr(dy) for the surface measure oy of an R-sphere SA=T(R) ~»

Zhis killed at last exit from $91(R)
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A time-homogeneous generative process

Proposition (Christensen, Kallsen, Strauch and LT (2025+))
1. Z"is an Ito-diffusion with dynamics
dzh = (b(Z]) + 2(X)V log h(Xp) dt + a(Z{) dW;
outside supp k and its distribution at the lifetime is given by

Gr(X’ Y)
h(x)

2. Leta = PZ. Then Zlisan h-transform of Z with initial distribution IPa(ngL € dy) and

o R GF(X) Y)
h(x) :== J h0y) a(dy).

P(Zf edy)= k(dy)

In particular, Z" has dynamics
b _ (h(7h h i 7h by W
dz = (b(Z{") + 2(Z{)V log h(Z{")) dt + o(Z;") dW4,

outside supp a =: ./ and ]P,x(Zét’_ edy | Zoh =x) = %a(dy) for ]Pa(Zél’_ € -)-a.e. x.
12118



A time-homogeneous generative process

Idealised algorithm:

1. Initialise Z!' ~ g, = IP,X(ZQV’L)
« for ergodic forward process with stationary distribution y and small exponential killing rate r > 0, choose
Br=p [« ergodic diffusion model]
« for exponentially killed BM with small killing rate r > 0, choose f8, = Laplace(0, (2r)~"/2I4)  [«> variance
exploding diffusion model]
1
. fork(dy) = GrTo.y)(Sz’ choose g, =6,

2. Simulate diffusion Z" until killing time and output Zé’_
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Learning to kill

Polarity hypothesis
Assume that # = supp ais polar for X, i.e., for any x € RY, P, (inf{t > 0 : X; € M} < ) = 0.
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Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Under the polarity hypothesis, the backward process Z" is killed at first entrance into /.

-
Possible strategles to estimate a S-fattening M5 = {x : dist(x, #) < 8§} given data X', ..., X" “ aand

an estimator 8 of 8 := V log b
. expllcnt plug-in approach estimate ./ directly or indirectly by setting ,%5 = (/%)5, then set
(=inflt>0: Z0 e ﬂg}
« implicit approach: use explosive behaviour of $ as x — ./
Theorem (Christensen, Kallsen, Strauch and LT (2025+))
Suppose that ./ is polar for X and Y solving dY; = o(Y;) dB;. Then, it a.s. holds that

£ =inf{t >0 : supla(Zh)] = oo} = inf{t > 0 : 82"l (g0, = oo}
s<t
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Denoising score matching

. for ]Pa(Z£ € )-a.e. x

_ G, (x Y)
a(dy)—JV log G, (x, y) ——— 6( )

= E[V, log G,(x, Zéf’ )| Zg’ = x|

-~ 1
8(:) = Viog ) = 7~ = [ 9,607 o(dy)

h(x

h(y)

= Ey[Vy logG(xZ)|Z§ = x|
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Denoising score matching

. for ]Pa(Z£ € )-a.e. x

1 Gi(x.y)
3 Vlog h(x) = v, G dy) = | YV, log G =
(9= 7log 0 = 22 [ 93G5 ) = [ wog G p 222 o

= ]E[VX log G, (x, ZQE_) | ZOE = x]
= B[V, log G(x, Z) | 2} = ]

« this implies that on RY \ Mg, 3 agrees ]Pa(Zévh_ € -)-a.e. with the minimiser of

2
BRERY 5 55 By [s(Z)) — Vlog G2, 211, 207> sl

a(dy)
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Denoising score matching

. for ]Pa(Z£ € )-a.e. x

_ G (x,y)
a(dy)—JV log G, (x, y) ——— (_( i)

= E[V, log G,(x, Zéf’ )| Zg’ = x|

8(x) = Vlog h(x) = (‘) | R o(dy)

h(x

h(y)

= Ey[V, log G,(x, Z! )|z§ = x|
« this implies that on RY \ Mg, 3 agrees ]Pa(Zévh_ € -)-a.e. with the minimiser of
d.pd h h —h \|?
B(RYGRY) 25> ]Ea[”s(Zg_) —Vlog G.(Zy, Zév_)" 1{"25,7_2({,”%}]

« note that if Z" = Z, then { ~ Exp(r) independent of X, Zy = X; has full support and we have

e
2 2
]Ea[||s(Zg”7)—Vlog G(zZ$, zt)| {IIZg”:Z(?IbrS}] - r]Ea[ L ls(zl—v1og G.(Z81, zI|*1 {"Zthfzohu%}dt]
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Projection learning

« we don’t have to start the backward process approximately in Pa(Z£ € dy): it will always be killed
on the data support . and different initialisations will yield different output distributions
supported on . ~ natural conditioning

- a natural question is therefore what happens if we don’t start the generative process from pure
noise but something more informative, say a masked or moderately noised picture

« it turns out that the natural conditioning aspect entails a blessing of dimensionality
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Projection learning

Let Z be an exponentially killed Brownian motion. Then,

) ki (5)

h(x) = _ —d/2
00 = [ Gty ety Gilxy) = 200 42(2 .

For large d,

x=y
J o @dy)

[Ix = y2=d a(dy)
and thus, if there is a unique projection x* € arg minyeﬂ|x — y| of x onto ., then

Vlog I;(x) ~d

x*—x sign(x* — x)

Vlog h(x) = d =d
og h(x) X

x* — x|

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Let §,¢ > 0 and fix an observation x € RY. If a(B(x, r)) > ¢ for some ball B(x, r) with radius r > 0
around y, then

P(Z}. € 40 Bx.(1+8)0) | zh = x) > 1- LIS
&
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Projection learning
Consider now estimators 8, an independent Brownian motion W and let 751 be the process solving
dZ7 = 8,(Zfn

ety dE+ Tpepy dWe, €= inf{t >0 ¢ |25 20,4 > M}.

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Fix an observation x € RY. Suppose that

. for any 6,8, > 0 it holds for sufficiently large n that

IP<H(§°’n(2 h-sz E))'{zﬁws}

>5’Z§=x) <e
L)

. forany n € N and § > 0, the function 8, is Ls-Lipschitz on ./%;
Let §,¢,8,& > 0. If a(B(x, r)) > ¢ then, for sufficiently large M > 0 and n € N,

JP(??" € M50 B(x, (1 +5)r)|20§” =x) > 1- 1;(1 +6)29_z
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Projection learning
Consider now estimators 8,, an independent Brownian motion W and let 750 be the process solving

58, 5 58, 5 _ . 53
27" = 82PN gy dt + 1y AW, { = mf{t >0 ¢ | 2% 0 > M}.
Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Fix an observation x € RY. Suppose that

. forany 8,8, > 0 it holds for sufficiently large n that

IP<H(3n(2 -8z 5))1{2,;¢/%5}

> 5‘ Z(f' = x) <e
L2
. forany n € N and § > 0, the function 8, is Ls-Lipschitz on ﬂg
Let 8,¢,8, > 0. If a(B(x, r)) > ¢ then, for sufficiently large M > 0 and n € IN,

P(Z" € s Bx. (1 +8)D| 25" = %) > 1~ S(1+8)> -

Thank you for your attention!
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