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Overview of current main research interests

1. Data-driven stochastic optimal control
• if the underlying stochastic process has unknown dynamics, how can we determine a control procedure

with sublinear regret?
• exploration/exploitation tradeoff

2. Statistical aspects of deep generative models
3. Statistics for SPDEs

• estimate structural breaks in a material from observations of a heat flow that is subject to random
perturbations

• explore methodological connections to change point and image reconstruction methods
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A model problem for data-driven optimal control

• consider a d -dimensional Langevin diffusion

dXt = −∇V (Xt ) dt + √2 dWt ;

if ergodic: stationary density 𝜋 ∝ exp(−V (⋅))
• we play the following game:

1. the aim is to keep the process close to a target state, say 0, at minimal long run costs
2. normally reflect the process in a domain D that we are free to choose:

dXD
t = −∇V (XD

t ) dt + √2 dWt + n(XD
t ) dLDt

3. costs:

JT (D) = ∫
T

0
c(XD

t ) dt
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
c increasing in |x |

+ 𝜅LDT⏟
reflection costs
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• Ergodic optimal control: for an admissible domain class Θ determine

D∗ ∈ argmin
D∈Θ

lim
T→∞

1
T
𝔼[JT (D)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕J(D)

(⇝ shape optimisation problem)

• Data-driven optimal control: If V is unknown, determine an estimator D̂ of D∗ based on
observations of the (controlled) process
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Learning the optimal reflection boundary

• Long term average costs are explicitly given by

J(D) = ∫
D
c(x)𝜋D (x) dx + 𝜅 ∫

𝜕D
𝜋D (x)ℋd−1(dx),

where 𝜋D (x) =
exp(−V (x))

∫D exp(−V (x)) = 𝜋(x)/𝜋(D)

⇝ estimator �̂� of the invariant density of the unreflected process provides plug-in M-estimator

D̂ ∈ argmin
D∈Θ

∫D c(x)�̂�(x) dx + 𝜅 ∫𝜕D �̂� (x)ℋd−1(dx)
∫D �̂� (x) dx

• minimax optimal adaptive estimators of 𝜋 (in terms of observation horizon T ) can be constructed
via kernel estimators under anisotropic Hölder smoothness assumptions

Problem
Exploration vs. Exploitation
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Episodic domain learning

τ1 τ2 τ3 τ4 τ5

ξ0

0

θ0
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Regret bound for episodic domain learning

Theorem (Christensen, Strauch, T. (2024)1; Christensen, Holk Thomsen, T. (2024)2)

There exists a purely data-driven episodic domain learning strategy Ẑ such that the expected regret
per time unit satisfies

1
T
𝔼[∫

T

0
c(X Ẑ

t ) dt + 𝜅LẐT ] − J(D∗) ≲

⎧
⎪

⎨
⎪
⎩

√log T
T 1/3 , d = 1,

( (log T )
2

T
)
1
3 , d = 2,

( log T
T

)
𝜷

3𝜷+d−2 , d ≥ 3.

1Christensen, Strauch and T. (2024). Learning to reflect: A unifying approach for data-driven stochastic control strategies . Bernoulli.
2Christensen, Holk Thomsen and T. (2024). Data-driven rules for multivariate reflection problems. SIAM/ASA J. Uncertain. Quantif.
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Numerical shape optimisation

• as target domains Θ restrict to strongly star-shaped sets at 0

• for D ∈ Θ consider polytope approximation D̃N such that for a sufficiently large number N of
spanning points J(D) ≈ J(D̃N ) = ̃J(r1, r2, … , rN )

• we derive explicit formulas for ∇ ̃J(𝒓), making gradient-based optimisation methods accessible
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Optimised shapes for Brownian motion with reflection cost 𝜅 = 1 and cost function c = |⋅| (left) and
c(x , y , z) = √x2 + 5y2 + z2 (right).
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For each 𝜅, we plot the optimized reflection boundaries, where 𝜋 is a mixture of three Gaussians with means at the
points marked in red. Left: Norm cost function, c = |⋅|. Right: Cost function c(x) = min{|x − 𝜇1|, |x − 𝜇2|, |x − 𝜇3|}.
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Estimates of the optimal shape (black) using kernel estimates after increasing periods of exploration. Notably, after
only T = 150, the estimated optimal shape has an associated cost only 0.61% higher than the true optimum.
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Denoising diffusion models

 

  

Forward SDE (data → noise) 

Reverse SDE (noise → data) 

score function

 

  

Forward SDEData Prior DataReverse SDE

  

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.

• general problem: given iid data (X0,i)i=1,…,n with unknown distribution p0, generate a new data
sample with (approximately) the same distribution

• denoising diffusion models have demonstrated spectacular generation abilities for vastly different
tasks
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Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.

Questions

1. are diffusion models minimax learners (in terms of smoothness assumptions on p0)?

2. how can empirical lack of curse of dimensionality be explained? ⇝ submanifold hypothesis

3. alternative model designs with enhanced theoretical/experimental performance?
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Questions

1. are diffusion models minimax learners (in terms of smoothness assumptions on p0)?

2. how can empirical lack of curse of dimensionality be explained? ⇝ submanifold hypothesis

3. alternative model designs with better theoretical/experimental justification?

• Oko et al. (2023, ICML) and Tang and Yang (2024, AISTATS) develop statistical theory for “vanilla”
diffusion models
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Denoising reflected diffusion models

Data Forward Reflected SDE Prior Reversed Reflected SDE Data

Source: Lou and Ermon (2023). Reflected Diffusion Models. ICML.

Questions

1. are diffusion models minimax learners (in terms of smoothness assumptions on p0)?

2. how can empirical lack of curse of dimensionality be explained? ⇝ submanifold hypothesis

3. alternative model designs with better theoretical/experimental justification?
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Denoising reflected diffusion models

Data Forward Reflected SDE Prior Reversed Reflected SDE Data

Source: Lou and Ermon (2023). Reflected Diffusion Models. ICML.

Questions

1. are reflected diffusion models minimax learners (in terms of smoothness assumptions on p0)?

2. how can empirical lack of curse of dimensionality be explained? ⇝ submanifold hypothesis

3. alternative model designs with enhanced theoretical/experimental justification?
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Modelling with symmetric reflected forward model

• we choose as a forward model a normally reflected diffusion on a bounded domain D :

dXt = ∇f (Xt ) dt + √2f (Xt ) dWt + n(Xt ) dLt , X0 ∼ p0, f ≥ fmin > 0.

• exponentially fast convergence to invariant distribution 𝒰(D)
• backwards dynamics determined by f and score

s∘(x , t) = ∇ log pt (x),

where

pt (x) =
∞
∑
j=0

e−𝜆jt ⟨p0, ej⟩L2ej(x), (𝜆j , ej)j eigenpairs of − ∇ ⋅ f ∇ with Neumann bound. cond.

⇝ calibrate deep neural network class 𝒮 that allows approximation with desired accuracy

⇝ denoising score matching estimator:

̂s ∈ argmin
s∈𝒮

1
n

n

∑
i=1

∫
T

T
∫
D
|s(y , t) − ∇y log pt (X0,i , y)|2pt (X0,i , y) dy dt .
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Denoising reflected diffusion models are minimax learners

Theorem (Holk, Strauch and T. (2024))

Suppose that p0 = ̃p0 +𝛼 for some 0 ≤ ̃p0 ∈ Hk
c (D) and 𝛼 > 0, where k > d/2. Then, there exists a class

of feed forward ReLU neural networks 𝒮, with explicit size constraints in terms of n, d and s, such that

𝔼[ TV(p0, ⃗p ̂s
T−T )] ≲ n−

k
2k+d (log n)3(log log n)1/2,

where T ≍ log n and T ≍ n−2k/((2−k/d)∧1)(2k+d).
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Change estimation for a stochastic heat equation

• Stochastic heat equation

dX (t) = Δ𝜗X (t) dt + dW (t), Δ𝜗 = ∇ ⋅ 𝜗∇,

driven by space-time white noise Ẇ (t , x) and broken diffusivity

𝜗(x) = 𝜗−1Λ−(x) + 𝜗+1Λ+(x), x ∈ [0, 1]d = Λ− ⊎ Λ+.

• special case for d = 1: Λ+ = (𝜏 , 1] with change point 𝜏

0 1

𝜗− 𝜗+

𝜏
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Estimation approach via local observations

• tile space with hypercubes Sq(𝛼) of side length 𝛿 and aim for estimation of minimal tiling Λ↕
+

Λ↕
+ Λ̂+

• observations are local in space and continuous in time (t ∈ [0, T ], T fixed):

X𝛿,𝛼(t) = ⟨X (t),K𝛿,𝛼⟩, where K𝛿,𝛼(x) = 𝛿−d/2K ((x − x𝛼)/𝛿),

XΔ
𝛿,𝛼(t) = ⟨X (t), ΔK𝛿,𝛼⟩
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Simultaneous M-estimator

• local observations yield modified local log-likelihoods ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+), where Λ+ ∈ 𝒜 for a family of

tiling sets 𝒜 ∋ Λ↕
+

⇝ ( ̂𝜗−, ̂𝜗+, Λ̂+) ∈ argmax(𝜗−,𝜗+,Λ+)∈[𝜗,𝜗]2×𝒜∑𝛼 ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+)

• in the 1D case we furthermore adjust ℓ𝛿,𝛼 to account for the error induced by a constant
approximation of 𝜗 on change point interval ⇝ fundamentally important to obtain optimal
convergence rates for 𝜗0±
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jump height 𝜂 ≔ |𝜗0+ − 𝜗0−|

Theorem (Reiß, Strauch and T., 2023)

(i) non-vanishing signal: |𝜂| ≥ 𝜂 > 0 for all 𝛿 ∈ 1/ℕ. Then,

| ̂𝜏 − 𝜏0| = 𝒪ℙ(𝛿) and | ̂𝜗± − 𝜗0±| = 𝒪ℙ(𝛿3/2).

(ii) vanishing signal: 𝜂 = o(𝛿), 𝛿3/2 = o(𝜂) and 𝜗0± ⟶ 𝜗∗, then

𝜂2

𝛿3
T ‖K ′‖2L2
2𝜗∗

( ̂𝜏 − 𝜏0)
d
⟶ argmin

h∈ℝ
{B↔(h) +

|h|
2
}, as 𝛿 → 0.

Thank you for your attention!
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Theorem (Tiepner and T., 2024)

Suppose that the number of tiles intersecting 𝜕Λ0
+ is of order 𝛿−d+𝛽, 𝛽 ∈ (0, 1]. Then,

𝔼[ vold (Λ̂+ △ Λ0
+)] ≲ 𝛿𝛽.

• Λ0
+ graph of a 𝛽-Hölder function ⇝ 𝔼[ vold (Λ̂+ △ Λ0

+)] ≲ 𝛿𝛽

• Λ0
+ convex ⇝ 𝔼[ vold (Λ̂+ △ Λ0

+)] ≲ 𝛿

Thank you for your attention!
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