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Some generalities on statistics for SPDEs

• Let A𝜗 be a self-adjoint generator of a C0-semigroup on L2(Λ) for some domain Λ ⊂ ℝd and
consider the SPDE

⎧⎪
⎨⎪
⎩

dX (t) = A𝜗X (t) dt + dW (t), t ∈ (0, T ],
X (0) = X0 ∈ L2(Λ),
X (t)|𝜕Λ = 0, t ∈ (0, T ],

where W is a cylindrical Wiener process, that is W (t) = ∑j∈ℕ 𝛽j(t)ej for independent Brownian
motions (𝛽j)j and a complete orthonormal system (ej)j in L2(Λ)

• for S𝜗(t) = exp(tA𝜗) the mild solution process is defined by

X (t) = S𝜗(t)X0 + ∫
t

0
S𝜗(t − s) dW (s), t ∈ [0, T ],

which for d > 1 is typically only realised in a space of distributions
• the mild solution solves the SPDE in the sense

⟨X (t), z⟩ = ⟨X0, z⟩ + ∫
t

0
⟨X (s),A𝜗z⟩ ds + ⟨W (t), z⟩, z ∈ D(A𝜗).
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• spectral observations: provided A𝜗 has an orthonormal eigenbasis (ej) that is independent of 𝜗
(think A𝜗 = 𝜗Δ), observe (j = 1, … , n, t ∈ [0, T ])

⟨X (t), ej⟩ = ⟨X0, ej⟩ + ∫
t

0
⟨X (s),A𝜗ej⟩ ds + ⟨W (t), ej⟩ = ⟨X0, ej⟩ − 𝜆j(𝜗) ∫

t

0
⟨X (s), ej⟩ ds + ⟨W (t), ej⟩,

⇝ observations consist of n independent Ornstein–Uhlenbeck processes; asymptotics: n → ∞

• local observation model1: for compactly supported, smooth K with ‖K ‖L2 = 1, resolution 𝛿 > 0 and
measurement locations xi ∈ Λ define the point-spread function K𝛿,i ≔ 𝛿−d/2K ( ⋅−xi𝛿 )

• observe (⟨X (t),K𝛿,i⟩)t∈[0,T ],i=1,…,n , where for K𝛿,i ∈ D(A𝜗),

d⟨X (t),K𝛿,i⟩ = ⟨X (t),A𝜗K𝛿,i⟩ dt + d⟨W (t),K𝛿,i⟩

⇝ observations are generalised Itô processes (but not independent for i ≠ j); asymptotics: 𝛿 → 0, n
may be fixed or increase with 𝛿−1

1Altmeyer, R., and M. Reiß (2021). Nonparametric estimation for linear SPDEs from local measurements. Ann. Appl. Prob.
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Change point model for stochastic heat equations

• Stochastic heat equation

dX (t) = Δ𝜗X (t) dt + dW (t), Δ𝜗 = ∇ ⋅ 𝜗∇,

with Dirichlet boundary conditions, and broken diffusivity

𝜗(x) = 𝜗−1Λ−(x) + 𝜗+1Λ+(x), x ∈ [0, 1]d = Λ− ⊎ Λ+, 𝜗− ∧ 𝜗+ > 0.

• special case for d = 1: Λ+ = (𝜏 , 1] with change point 𝜏

0 1

𝜗− 𝜗+

𝜏
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The univariate case

−Δ𝜗 is induced by Dirichlet form

ℰ(u, v) ≔ ⟨𝜗𝜕xu, 𝜕xv⟩ = ∫
1

0
𝜗(x) 𝜕xu(x) 𝜕xv(x) dx , u, v ∈ H1

0 ((0, 1)),

and generates C0-semigroup S𝜗(t) = exp(tΔ𝜗), t ∈ [0, T ], having transition densities that satisfy the
heat kernel bound

p𝜗t (x , y) ≤ c1t
−1/2 exp ( −

|x − y |2

c2t
), (x , y) ∈ (0, 1)2, t ∈ (0, T ].

Mild solution

X (t) = ∫
t

0
S𝜗(t − s) dW (s), t ∈ [0, T ], (assume X (0) ≡ 0)

is L2((0, 1))-valued and we have

⟨X (t), z⟩ = ∫
t

0
⟨X (s), Δ𝜗z⟩ ds + ⟨W (t), z⟩, ∀ z ∈ D(Δ𝜗) = {u ∈ H1

0 ((0, 1)) ∶ 𝜗𝜕xu ∈ H1((0, 1))}.
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Observation model

• let K ∶ ℝ → ℝ be a smooth kernel with suppK ⊂ [−1/2, 1/2], ‖K ‖L2 = 1 and for 𝛿 = n−1,
xi = (i − 1/2)𝛿 (i ∈ {1, … , 𝛿−1}), define K𝛿,i(x) = 𝛿−1/2K (𝛿−1(x − xi))

• local observations (X𝛿,i(t))t∈[0,T ] = (⟨X (t),K𝛿,i⟩)t∈[0,T ] and (XΔ
𝛿,i(t))t∈[0,T ] = (⟨X (t), ΔK𝛿,i⟩)t∈[0,T ]

0 0 0
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• we have

X𝛿,i(t) = {
∫t0 𝜗

0
±X

Δ
𝛿,i(s) ds + B𝛿,i(t), i ≷ k0,

∫t0 ∫
s
0 ⟨Δ𝜗 0S𝜗 0(s − u)K𝛿,i , dW (u)⟩ ds + B𝛿,k0(t), i = k0,

for independent Brownian motions (B𝛿,i)i∈[𝛿−1]
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Estimation approach

• modified local log-likelihood:

ℓ𝛿,i(𝜗−, 𝜗+, 𝜗∘, k) ≔ 𝜗𝛿,i(k) ∫
T

0
XΔ
𝛿,i(t) dX𝛿,i(t) −

𝜗𝛿,i(k)2

2 ∫
T

0
XΔ
𝛿,i(t)

2 dt , 𝜗𝛿,i(k) ≔
⎧

⎨
⎩

𝜗−, i < k ,
𝜗∘, i = k ,
𝜗+, i > k

• set ( ̂𝜗−, ̂𝜗+, ̂𝜗∘, ̂𝜏 ) ≔ ( ̂𝜗−, ̂𝜗+, ̂𝜗∘, ̂k𝛿), where

( ̂𝜗−, ̂𝜗+, ̂𝜗∘, ̂k) ≔ argmax
(𝜗−,𝜗+,𝜗∘,k)

∑
i∈[𝛿−1]

ℓ𝛿,i(𝜗−, 𝜗+, 𝜗∘, k)

= argmin
(𝜗−,𝜗+,𝜗∘,k)

{1
2

𝛿−1

∑
i=1

(𝜗𝛿,i(k) − 𝜗0𝛿,i)
2I𝛿,i −

𝛿−1

∑
i=1

(𝜗𝛿,i(k) − 𝜗0𝛿,i)M𝛿,i − 𝜗𝛿,k0(k)R𝛿,k0(𝜗
0
∘ )},

for

M𝛿,i ≔ ∫
T

0
XΔ
𝛿,i(t) dB𝛿,i(t), I𝛿,i ≔ ∫

T

0
XΔ
𝛿,i(t)

2 dt ,

and R𝛿,k0(𝜗
0
∘ ) is an error term resulting from K𝛿,k0 ∉ D(Δ𝜗) in general
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Basic estimates

Lemma (Reiß, Strauch and T., 2023+)

• For any i ∈ [𝛿−1] ∖ {k0},
𝔼[I𝛿,i] =

T
2𝜗(xi)

‖K ′‖2L2𝛿
−2 + 𝒪(1),

and, moreover, 𝔼[I𝛿,k0] ∼ 𝛿−2;

• for any vector 𝛼 ∈ ℝn s.t. 𝛼k0 = 0,

Var(
𝛿−1

∑
i=1

𝛼i I𝛿,i) ≤
T

2𝜗3
𝛿−2‖𝛼‖2ℓ2‖K

′‖2L2 ;

•
𝔼[|R𝛿,k0(𝜗∘)|] ≲ 𝛿−2, Var(R𝛿,k0(𝜗∘)) ≲ 𝛿−2,

and, moreover,
∃ 𝜗0∘ ∶ |𝔼[R𝛿,k0(𝜗

0
∘ )]| ≤ 𝛿−1.
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Concentration results

∑𝛿−1
i=1 𝛼i(I𝛿,i − 𝔼[I𝛿,i]) belongs to second Wiener chaos for an isonormal Gaussian process associated to

(XΔ
i (t))t∈[0,T ],i∈[𝛿−1] ⇝ relate to Bernstein-type concentration result from Nourdin and Viens (2009)2

Proposition (Reiß, Strauch and T., 2023+)

Let 𝛼 ∈ ℝn+ ∖ {0} s.t. 𝛼k0 = 0. Then, for any z > 0, we have

ℙ(|
n

∑
i=1

𝛼i(I𝛿,i − 𝔼[I𝛿,i])| ≥ z) ≤ 2 exp ( −
𝜗2

4‖𝛼‖∞
z2

z +∑n
i=1 𝛼i𝔼[I𝛿,i]

).

2Nourdin, I., and F.G. Viens (2009). Density formula and concentration inequalities with Malliavin calculus. Electron. J. Prob.
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Proposition (Reiß, Strauch and T., 2023+)
Let

M𝛿,i ≔ ∫
𝜎i

0
XΔ
𝛿,i(t) dB𝛿,i(t), where 𝜎i ≔ inf{t ≥ 0 ∶ ∫

t

0
X𝛿,i(s)2 ds > 𝔼[I𝛿,i].

Then, (M𝛿,i)i∈[𝛿−1] ∼ N(0, diag((𝔼[I𝛿,i])i∈[𝛿−1])) and

ℙ(|
n

∑
i=1

M𝛿,i −M𝛿,i | ≥ z ,
n

∑
i=1

𝛼2i |I𝛿,i − 𝔼[I𝛿,i]| ≤ L) ≤ exp(−z2/2L), 𝛼 ∈ ℝn , z , L > 0
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Rate of convergence

Define the jump height 𝜂 ≔ 𝜗0+ − 𝜗0−.

Theorem (Reiß, Strauch and T., 2023+)

Suppose that 𝜗0± ⟶
𝛿→0

𝜗∗± and that |𝜂| ≥ 𝜂 > 0 for all 𝛿 ∈ 1/ℕ. Then,

| ̂𝜏 − 𝜏0| = 𝒪ℙ(𝛿) and | ̂𝜗± − 𝜗0±| = 𝒪ℙ(𝛿3/2).

• the estimation rate for 𝜏0 cannot be improved due to discretisation effects

• the estimation rate for 𝜗0± is the minimax optimal rate for parametric estimation from multiple
local measurements in the model A𝜗 = 𝜗Δ without change point2

2Altmeyer, R., Tiepner, A. and M. Wahl (2024). Optimal parameter estimation for linear SPDEs from multiple measurements. Ann.
Stat.
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Rate of convergence

Define the jump height 𝜂 ≔ 𝜗0+ − 𝜗0−.

Theorem (Reiß, Strauch and T., 2023+)
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𝜗∗± and that |𝜂| ≥ 𝜂 > 0 for all 𝛿 ∈ 1/ℕ. Then,

| ̂𝜏 − 𝜏0| = 𝒪ℙ(𝛿) and | ̂𝜗± − 𝜗0±| = 𝒪ℙ(𝛿3/2).

Proof outline:

1. verify basic consistency of ( ̂𝜗±, ̂𝜏 )
2. determine appropriate empirical process (ℒ𝛿)𝛿∈1/ℕ with [𝜗, 𝜗]3 × (0, 1] ∋ 𝜒 ↦ ℒ𝛿(𝜒) such that

( ̂𝜗−, ̂𝜗+, ̂𝜗∘, ̂𝜏 ) ∈ argmin
𝜒∈[𝜗,𝜗]3×(0,1]

ℒ𝛿(𝜒)

3. control local fluctuations of centered empirical process ℒ𝛿 − ℒ̃𝛿(𝜒) around 𝜒0, where
ℒ̃𝛿(𝜒) = 𝔼[ℒ𝛿(𝜒)] + 𝒪(𝛿2)

4. exploit (non-standard) peeling device to prove convergence rate
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Vanishing signal

• for the previous consistency result it was crucial that the jump height 𝜂 does not vanish

• assume now that 𝜂 ⟶
𝛿→0

0 and that 𝜗0± = 𝜗0±(𝛿) are known

• set ̂𝜏 = ̂k𝛿, where

̂k ≔ argmax
k=1,…,𝛿−1

k

∑
i=1

(𝜗0− ∫
T

0
XΔ
𝛿,i(t) dX𝛿,i(t) −

(𝜗0−)2

2 ∫
T

0
XΔ
𝛿,i(t)

2 dt)

+
𝛿−1

∑
i=k+1

(𝜗0+ ∫
T

0
XΔ
𝛿,i(t) dX𝛿,i(t) −

(𝜗0+)2

2 ∫
T

0
XΔ
𝛿,i(t)

2 dt)

= argmin
k=1,…,𝛿−1

Zk ,

for

Zk =
⎧⎪
⎨⎪
⎩

0, k = k0,

−𝜂∑k0
i=k+1 ∫

T
0 XΔ

𝛿,i(t) dB𝛿,i(t) +
𝜂2

2
∑k0

i=k+1 ∫
T
0 XΔ

𝛿,i(t)
2 dt + 𝜂R𝛿,k0(𝜗

0
−), k < k0,

𝜂∑k
i=k0+1 ∫

T
0 XΔ

𝛿,i(t) dB𝛿,i(t) +
𝜂2

2
∑k

i=k0+1 ∫
T
0 XΔ

𝛿,i(t)
2 dt , k > k0,

.
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Limit theorem for vanishing signal

Reformulate the estimator again in terms of an M-estimator: Let v𝛿 → 0, and define

M𝜏 0
T ,𝛿(h) = MT ,𝛿(𝜏0 + hv𝛿) −MT ,𝛿(𝜏0), for MT ,𝛿(z) ≔

⌈z/𝛿⌉
∑
i=1

M𝛿,i , z ∈ [0, 1]

I𝜏
0

T ,𝛿(h) = IT ,𝛿(𝜏0 + hv𝛿) − IT ,𝛿(𝜏0), for IT ,𝛿(z) ≔
⌈z/𝛿⌉
∑
i=1

I𝛿,i , z ∈ [0, 1],

s.t.

𝒵𝛿(v−1𝛿 ( ̂𝜏 − 𝜏0)) = min
h∈[−𝜏0/v𝛿,(1−𝜏 0)/v𝛿]

𝒵𝛿(h) + 𝒪ℙ(𝜂2𝛿−2), for 𝒵𝛿(h) ≔ 𝜂M𝜏 0
T ,𝛿(h) +

𝜂2

2
I𝜏

0

T ,𝛿(h)

Theorem (Reiß, Strauch and T., 2023+)

Assume 𝜂 = o(𝛿) and 𝛿3/2 = o(𝜂). Then, for a two-sided Brownian motion (B↔(h), h ∈ ℝ), we have

𝜂2

𝛿3⏟
=v−1𝛿

T ‖K ′‖2L2
2𝜗∗

( ̂𝜏 − 𝜏)
d
⟶ argmin

h∈ℝ
{B↔(h) +

|h|
2
}, as 𝛿 → 0.
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The multivariate case

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

𝜏

Λ−

Λ+

• Recall:
dX (t) = Δ𝜗X (t) dt + dW (t), Δ𝜗 = ∇ ⋅ 𝜗∇,

with
𝜗(x) = 𝜗−1Λ−(x) + 𝜗+1Λ+(x), x ∈ [0, 1]d = Λ− ⊎ Λ+, 𝜗− ∧ 𝜗+ > 0.

• we call Λ+ a change domain
• structural similarities to image reconstruction problem

Yi = 𝜗−1Λ−(Xi) + 𝜗+1Λ+(Xi) + 𝜀i ,

for (possibly random) measurement locations Xi and noise 𝜀i 13/17



Local observations

• put regular 𝛿-grid on [0, 1]d with grid centers x𝛼, 𝛼 ∈ [n]d = [𝛿−1]d and aim for estimation of
minimal tiling Λ↕

+ of Λ0
+

Λ↕
+ Λ̂+

• set K𝛿,𝛼 = 𝛿−d/2K ((⋅ − x𝛼)/𝛿)

• local observations X𝛿,𝛼(t) = ⟨X (t),K𝛿,𝛼⟩ and XΔ
𝛿,𝛼(t) = ⟨X (t), ΔK𝛿,𝛼⟩ given for 𝛼 ∈ [n]d , t ∈ [0, T ]

14/17



Estimation approach

• 𝒜+ is a family of tiling sets such that Λ↕
+ ∈ 𝒜+

• Θ± are 𝜂-separated sets such that 𝜗0± ∈ Θ±

• set
( ̂𝜗−, ̂𝜗+, Λ̂+) ∈ argmax

(𝜃−,𝜃+,Λ+)∈Θ−×Θ+×𝒜+

ℓ𝛿,𝛼(𝜃−, 𝜃+, Λ+),

where

ℓ𝛿,𝛼(𝜗−, 𝜗+, Λ+) = 𝜗𝛿,𝛼(Λ+) ∫
T

0
XΔ
𝛼,𝛿(t) dX𝛿,𝛼(t) −

𝜗𝛿,𝛼(Λ+)2

2 ∫
T

0
XΔ
𝛿,𝛼(t)

2 dt ,

for

𝜗𝛿,𝛼(Λ+) = {
𝜗+, x𝛼 ∈ Λ+,
𝜗−, else.
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Convergence rate

Theorem (Tiepner and T., 2024+)

Suppose that the number of hypercubes intersecting 𝜕Λ0
+ is of order 𝛿−d+𝛽 for some 𝛽 ∈ (0, 1]. Then,

𝔼[ vold (Λ̂+ △ Λ0
+)] ≲ 𝛿𝛽,

and ̂𝜗± are consistent.

In particular, if

• Λ0
+ (epi)graph of a 𝛽-Hölder function ⟹ 𝔼[ vold (Λ̂+ △ Λ0

+)] = 𝔼[‖ ̂𝜏 − 𝜏0‖L1] ≲ 𝛿𝛽;

• Λ0
+ convex ⟹ 𝔼[ vold (Λ̂+ △ Λ0

+)] ≲ 𝛿

and in both cases we can choose 𝒜+ s.t. |𝒜+| ≍ 𝛿−d .

• in the image reconstruction model with regular design (fixed measurement locations x𝛼), 𝛿𝛽 is the
minimax optimal rate for 𝛽-Hölder continuous graph representation of the foreground image

• in the above regular image reconstruction model, 𝛿 is optimal for convex foreground images
• optimal rates for higher order Hölder smoothness require randomised design ⇝ how to

incorporate this appropriately in local measurement approach?
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Summary

• for a stochastic heat equation with piecewise constant diffusivity, we construct a simultaneous
M-estimator for the conductivities 𝜗0± and the change point 𝜏0 from multiple local measurements

• in case of non-vanishing jump height, we show that

| ̂𝜏 − 𝜏0| = 𝒪ℙ(𝛿) and | ̂𝜗± − 𝜗0±| = 𝒪ℙ(𝛿3/2)

• in case of vanishing jump height and known parameters 𝜗0± we construct a change point estimator
̂𝜏 with asymptotic distribution

𝜂2

𝛿3
T ‖K ′‖2L2
2𝜗∗

( ̂𝜏 − 𝜏0)
d
⟶ argmin

h∈ℝ
{B↔(h) +

|h|
2
}, as 𝛿 → 0,

provided 𝜂 = o(𝛿) and 𝛿3/2 = o(𝜂)
• in the multivariate change domain estimation problem we construct a minimal tiling estimator

whose convergence rate is determined by the Minkowski dimension of the change domain’s
boundary

Thank you for your attention!
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