On some modern developments in generative modelling

ISA Oberseminar

Lukas Trottner

18 November 2025

University of Stuttgart

Motivation:

"Creating noise from data is easy; creating data from noise is generative modeling."

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.

Generative modelling

Setup: identically distributed samples $X_1, ..., X_n$ with unknown distribution P are given

Goal: develop sampling algorithms that do not rely on structural assumptions on *P*

- winvolves (implicitly) learning the underlying distribution of a dataset to generate new samples that
 - a) follow approximately the same distribution as the training data;
 - b) should not be drawn from the training data set
- \leadsto essential in applications like image synthesis, text generation, data augmentation ...

Noise transformation

Inverse transform sampling: for an \mathbb{R} -valued random variable X with cdf F and $U \sim \mathcal{U}((0,1))$, we have $F^{-1}(U) \stackrel{d}{=} X$ for the left-inverse F^{-1} of F

- we don't know F, but are only given samples $X_1, \dots, X_n \stackrel{d}{=} X$
- naïve approach: replace F by empirical cdf $\widehat{F}(x) = \frac{\#\{X_i : X_i \leq x\}}{n}$ and set $\widehat{X} = \widehat{F}^{-1}(U)$ for an independent $U \sim \mathcal{U}((0,1))$
- if $X_{(1)}, \dots, X_{(n)}$ is an increasing ordering of the data set and $U \in [k/n, (k+1)/n)$, then $\widehat{X} = X_{(k)}$
- \Rightarrow algorithm learns the empirical distribution $\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i} \Rightarrow$ overfitting/"no creativity"

Noise transformation

Inverse transform sampling: for an \mathbb{R} -valued random variable X with cdf F and $U \sim \mathcal{U}((0,1))$, we have $F^{-1}(U) \stackrel{d}{=} X$ for the left-inverse F^{-1} of F

- we don't know F, but are only given samples $X_1, \dots, X_n \stackrel{d}{=} X$
- naïve approach: replace F by empirical cdf $\widehat{F}(x) = \frac{\#\{X_i : X_i \leq x\}}{n}$ and set $\widehat{X} = \widehat{F}^{-1}(U)$ for an independent $U \sim \mathcal{U}((0,1))$
- if $X_{(1)}, \dots, X_{(n)}$ is an increasing ordering of the data set and $U \in [k/n, (k+1)/n)$, then $\widehat{X} = X_{(k)}$
- \Rightarrow algorithm learns the empirical distribution $\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i} \Rightarrow$ overfitting/"no creativity"

To evaluate the performance of an algorithm that outputs $\widehat{X} = \widehat{T}(U)$, for some $\widehat{T} \in \sigma(X_1, \dots, X_n)$ and independent noise U we can

· analyse the rate of convergence of

$$\mathbb{E}\left[d(\widehat{T}_{\sharp}\mathbb{P}_{U},\mathbb{P}_{X})\right],$$
 d some probability distance or divergence

- study distance of generated distribution to empirical distribution \mathbb{P}_n
- inspect samples visually

Generative Adversial Networks (GANs)

Key idea: GANs use a game-theoretic setup:

- Generator G: maps random, easy to-sample-from noise U to data space to generate samples
- Discriminator D: distinguishes between real samples X and generated samples G(U)

Objective: A minimax game is played:

$$\inf_{G \in \mathcal{G}} \sup_{D \in \mathcal{D}} |\mathbb{E}[D(X)] - \mathbb{E}[D(G(U))]|$$

Generative Adversial Networks (GANs)

Key idea: GANs use a game-theoretic setup:

- Generator G: maps random, easy to-sample-from noise U to data space to generate samples
- Discriminator D: distinguishes between real samples X and generated samples G(U)

Objective: A minimax game is played:

$$\inf_{G \in \mathcal{G}} \sup_{D \in \mathcal{D}} |\mathbb{E}[D(X)] - \mathbb{E}[D(G(U))]|$$

• for $\mathcal{D} = \{D : D \text{ is } 1\text{-Lipschitz}\}\$ this is equivalent to

$$\inf_{G \in \mathcal{G}} W_1(\mathbb{P}_X, G_{\sharp} \mathbb{P}_U) = \inf_{G \in \mathcal{G}} \inf_{\gamma \in \Gamma(\mathbb{P}_X, G_{\sharp} \mathbb{P}_U)} \int \|x - y\| \gamma(\mathrm{d}x, \mathrm{d}y), \tag{Wasserstein-GAN}$$

where
$$\gamma \in \Gamma(\mathbb{P}_X, G_{\sharp}\mathbb{P}_U)$$
 iff $\gamma(\mathrm{d} x \times \mathbb{R}^d) = \mathbb{P}_X(\mathrm{d} x)$ and $\gamma(\mathbb{R}^d \times \mathrm{d} y) = \mathbb{P}(G(U) \in \mathrm{d} y)$

Generative Adversial Networks (GANs)

Key idea: GANs use a game-theoretic setup:

- Generator G: maps random, easy to-sample-from noise U to data space to generate samples
- Discriminator D: distinguishes between real samples X and generated samples G(U)

Objective: A minimax game is played:

$$\inf_{G \in \mathcal{G}} \sup_{D \in \mathcal{D}} |\mathbb{E}[D(X)] - \mathbb{E}[D(G(U))]|$$

• for $\mathcal{D} = \{D : D \text{ is } 1\text{-Lipschitz}\}\$ this is equivalent to

$$\inf_{G \in \mathcal{G}} W_1(\mathbb{P}_X, G_{\sharp} \mathbb{P}_U) = \inf_{G \in \mathcal{G}} \inf_{\gamma \in \Gamma(\mathbb{P}_X, G_{\sharp} \mathbb{P}_U)} \int \|x - y\| \gamma(\mathrm{d}x, \mathrm{d}y), \tag{Wasserstein-GAN}$$

where $\gamma \in \Gamma(\mathbb{P}_X, G_{\sharp}\mathbb{P}_U)$ iff $\gamma(dx \times \mathbb{R}^d) = \mathbb{P}_X(dx)$ and $\gamma(\mathbb{R}^d \times dy) = \mathbb{P}(G(U) \in dy)$

• in practice, $\mathcal D$ and $\mathcal G$ are chosen as parameterised neural network classes and expectations are replaced by empirical means:

$$\widehat{G} \in \arg\min_{G \in \mathcal{G}} \underbrace{\sup_{D \in \mathcal{D}} |\mathbb{E}_n D - \mathbb{E}[D(G(U))]|}_{\approx \mathbb{W}_1(\mathbb{P}_n, G_{\sharp}\mathbb{P}_U)}$$

Langevin MCMC algorithm: given target density p_0 simulate diffusion

$$dZ_t = \nabla \log p_0(Z_t) dt + \sqrt{2} dW_t$$

and output Z_T for T "sufficiently large": if p_0 is sufficiently nice, then $Z_t \stackrel{d}{\longrightarrow} p_0$

Langevin MCMC algorithm: given target density p_0 simulate diffusion

$$dZ_t = \nabla \log p_0(Z_t) dt + \sqrt{2} dW_t$$

and output Z_T for T "sufficiently large": if p_0 is sufficiently nice, then $Z_t \stackrel{d}{\longrightarrow} p_0$

• bad idea: estimate p_0 by some \hat{p} and replace $\nabla \log p_0$ by $\nabla \log \hat{p}$ (explicit approach)

Langevin MCMC algorithm: given target density p_0 simulate diffusion

$$dZ_t = \nabla \log p_0(Z_t) dt + \sqrt{2} dW_t$$

and output Z_T for T "sufficiently large": if p_0 is sufficiently nice, then $Z_t \stackrel{d}{\longrightarrow} p_0$

- bad idea: estimate p_0 by some \hat{p} and replace $\nabla \log p_0$ by $\nabla \log \hat{p}$ (explicit approach)
- implicit approach: consider $p_{0,\sigma}=p_0*\phi_{0,\sigma^2}$ for a Gaussian density ϕ_{0,σ^2} (σ^2 small) instead and target score $\nabla \log p_{0,\sigma^2}$ directly

Langevin MCMC algorithm: given target density p_0 simulate diffusion

$$dZ_t = \nabla \log p_0(Z_t) dt + \sqrt{2} dW_t$$

and output Z_T for T "sufficiently large": if p_0 is sufficiently nice, then $Z_t \xrightarrow{d} p_0$

- bad idea: estimate p_0 by some \hat{p} and replace $\nabla \log p_0$ by $\nabla \log \hat{p}$ (explicit approach)
- implicit approach: consider $p_{0,\sigma}=p_0*\phi_{0,\sigma^2}$ for a Gaussian density ϕ_{0,σ^2} (σ^2 small) instead and target score $\nabla \log p_{0,\sigma^2}$ directly
- denoising score matching: let $X \sim p_0$, $X_\sigma^2 = X + \sigma \varepsilon \sim p_0 * \phi_{0,\sigma^2}$, for indep. noise $\varepsilon \sim \mathcal{N}(0,\mathbb{I}_d)$

$$\nabla \log p_{0,\sigma^{2}}(x) = \frac{\int \nabla_{x} \phi_{0,\sigma^{2}}(x-y) p_{0}(dy)}{p_{0,\sigma^{2}}(x)} = \int \nabla_{x} \log \varphi_{0,\sigma^{2}}(x-y) \underbrace{\frac{\phi_{0,\sigma^{2}}(x-y) p_{0}(dy)}{p_{0,\sigma^{2}}(x)}}_{=\mathbb{P}(X \in dy | X_{\sigma^{2}} = x)}$$

$$= \mathbb{E} \big[\nabla \log \phi_{X,\sigma^2}(X_{\sigma^2}) \mid X_{\sigma^2} = x \big]$$

Langevin MCMC algorithm: given target density p_0 simulate diffusion

$$dZ_t = \nabla \log p_0(Z_t) dt + \sqrt{2} dW_t$$

and output Z_T for T "sufficiently large": if p_0 is sufficiently nice, then $Z_t \stackrel{d}{\longrightarrow} p_0$

- bad idea: estimate p_0 by some \hat{p} and replace $\nabla \log p_0$ by $\nabla \log \hat{p}$ (explicit approach)
- implicit approach: consider $p_{0,\sigma} = p_0 * \phi_{0,\sigma^2}$ for a Gaussian density ϕ_{0,σ^2} (σ^2 small) instead and target score $\nabla \log p_{0,\sigma^2}$ directly
- denoising score matching: let $X \sim p_0$, $X_{\sigma}^2 = X + \sigma \varepsilon \sim p_0 * \phi_{0,\sigma^2}$, for indep. noise $\varepsilon \sim \mathcal{N}(0, \mathbb{I}_d)$

$$\nabla \log p_{0,\sigma^{2}}(x) = \frac{\int \nabla_{x} \phi_{0,\sigma^{2}}(x-y) p_{0}(\mathrm{d}y)}{p_{0,\sigma^{2}}(x)} = \int \nabla_{x} \log \varphi_{0,\sigma^{2}}(x-y) \underbrace{\frac{\phi_{0,\sigma^{2}}(x-y) p_{0}(\mathrm{d}y)}{p_{0,\sigma^{2}}(x)}}_{=\mathbb{P}(X \in \mathrm{d}y | X_{\sigma^{2}} = x)}$$

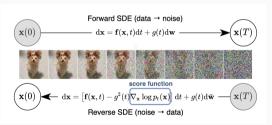
$$= \mathbb{E}\big[\nabla \log \phi_{X,\sigma^2}(X_{\sigma^2}) \mid X_{\sigma^2} = x\big]$$

$$\mathsf{ERM:} \quad \hat{s} \in \arg\min_{s \in \mathcal{S}} \frac{1}{M} \sum_{j=1}^{M} \|s(X_{i_j,\sigma^2}) - \nabla \log \phi_{X_{i_j},\sigma^2}(X_{i_j,\sigma^2})\|^2 = \arg\min_{s \in \mathcal{S}} \frac{1}{M} \sum_{j=1}^{M} \|s(X_{i_j,\sigma^2}) + \frac{1}{\sigma} \varepsilon_{i_j}\|^2,$$

where the X_{i_i} are uniformly sampled from X_1, \dots, X_n and $X_{i_i, \sigma^2} = X_{i_i} + \sigma \varepsilon_{i_i}$

Denoising diffusion models

- provide an iterative generative algorithm to create new samples that approximately match the target distribution p_0 , given a finite number of samples corresponding to an unknown p_0
- general idea: find a stochastic process that perturbs p_0 to a new distribution p_T such that
 - 1) p_T or a good approximation thereof is easy to sample from, and
 - 2) the perturbation is reversible in the sense that we know how to simulate the time-reversed process



Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.

Denoising Diffusion Models

• for some fixed time T > 0 consider the forward model

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t, \quad t \in [0, T], X_0 \sim p_0$$

Denoising Diffusion Models

• for some fixed time T > 0 consider the forward model

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t, \quad t \in [0, T], X_0 \sim p_0$$

• letting $p_t(x) = \int p_{0,t}(y,x) p_0(\mathrm{d}y)$ be the marginal densities of (X_t) , the time reversal $X_t = X_{T-t}$ solves

$$\mathrm{d} \dot{\bar{X}}_t = -\overline{b}(T-t,\dot{\bar{X}}_t)\,\mathrm{d}t + \sigma(T-t,\dot{\bar{X}}_t)\,\mathrm{d}\overline{W}_t, \quad t \in [0,T], \dot{\bar{X}}_0 \sim p_T,$$

where

$$\overline{b}_{i}(t,x) = b_{i}(t,x) - \frac{1}{p_{t}(x)} \sum_{j,k=1}^{d} \frac{\partial}{\partial x_{j}} (p_{t}(x)\sigma_{ik}(t,x)\sigma_{jk}(t,x))$$

$$= b_{i}(t,x) - (\nabla \cdot \Sigma(t,x))_{i} - (\nabla \log p_{t}(x))_{i}, \quad i = 1,...,d, \Sigma = \sigma \sigma^{\top}$$

Denoising Diffusion Models

• for some fixed time T > 0 consider the forward model

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t, \quad t \in [0, T], X_0 \sim p_0$$

• letting $p_t(x) = \int p_{0,t}(y,x) p_0(\mathrm{d}y)$ be the marginal densities of (X_t) , the time reversal $X_t = X_{T-t}$ solves

$$d\vec{X}_t = -\overline{b}(T - t, \vec{X}_t) dt + \sigma(T - t, \vec{X}_t) d\overline{W}_t, \quad t \in [0, T], \dot{X}_0 \sim p_T,$$

where

$$\overline{b}_{i}(t,x) = b_{i}(t,x) - \frac{1}{p_{t}(x)} \sum_{j,k=1}^{d} \frac{\partial}{\partial x_{j}} (p_{t}(x)\sigma_{ik}(t,x)\sigma_{jk}(t,x))$$

$$= b_{i}(t,x) - (\nabla \cdot \Sigma(t,x))_{i} - (\nabla \log p_{t}(x))_{i}, \quad i = 1, \dots, d, \Sigma = \sigma\sigma^{\top}$$

- \leadsto time-reversed process solves a time-inhomogeneous SDE, now with drift $-\overline{b}(T-\cdot,\cdot)$ involving the score $\nabla \log p_t$, which depends on the unknown data distribution p_0
- → score needs to be estimated from the data

Denoising score matching

· denoising score matching:

and thus

$$\mathfrak{S} := \nabla \log p_t \in \operatorname*{arg\,min}_{s\,\,\mathrm{meas.}} \mathbb{E}\big[\|s(X_t) - \nabla_2 \log p_{0,t}(X_0, X_t)\|^2\big]$$

 \Rightarrow given data $(X_0^i)_{i \in [n]} \stackrel{\text{iid}}{\sim} p_0$ define the denoising score estimator

$$\hat{\mathbf{g}} \in \arg\min_{s \in \mathcal{S}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{X_0^i} \Big[\int_{\underline{T}}^T \| s(t, X_t) - \nabla_2 \log p_{0, t}(X_0, X_t) \|^2 \, \mathrm{d}t \Big],$$

where $0 < \underline{T} \ll T$ and \mathcal{S} is an approximating function class, e.g. space-time neural networks

Generative process

On $[0, T - \underline{T}]$, simulate

$$dY_t = \left(-b(T-t, Y_t) + \nabla \cdot \Sigma(T-t, Y_t) + \Sigma(T-t, Y_t)\hat{\mathbf{g}}(T-t, Y_t)\right)dt + \sigma(T-t, Y_t)dW_t, \quad \mathbb{P}^{Y_0}(dy) \approx p_T(y)dy$$

Output:

$$Y_{T-\underline{T}} \stackrel{d}{\approx} \overleftarrow{X}_{T-\underline{T}} = X_{\underline{T}} \stackrel{d}{\approx} X_0$$

Generative process

On $[0, T - \underline{T}]$, simulate

$$dY_t = \left(-b(T-t, Y_t) + \nabla \cdot \Sigma(T-t, Y_t) + \Sigma(T-t, Y_t)\hat{\mathbf{g}}(T-t, Y_t)\right)dt + \sigma(T-t, Y_t)dW_t, \quad \mathbb{P}^{Y_0}(dy) \approx p_T(y)dy$$

Output:

$$Y_{T-\underline{T}} \stackrel{d}{\approx} \overleftarrow{X}_{T-\underline{T}} = X_{\underline{T}} \stackrel{d}{\approx} X_0$$

Minimax optimality of diffusion models

Assumptions on data distribution p_0 with support \mathcal{M} :

- Leb(\mathcal{M}) > 0, \mathcal{M} bounded, $p_0|_{\mathcal{M}} \ge m > 0$ and β -smooth: Oko, Akiyama, Suzuki (*ICML* '23), Dou, Kotekal, Xu and Zhou ('24+) [d = 1, no log-factors], Holk, Strauch, LT ('25+) [reflected models]
- d = 1, $\mathcal{M} = \mathbb{R}$, p_0 not lower bounded: Zhang et al. ('25, ICML)
- M bounded and ⊂ linear subspace: Oko, Akiyama, Suzuki (ICML '23), Chen et al. (ICML '23)
- \mathcal{M} is a d^* -dimensional submanifold: Tang and Yang (AISTATS '24), Azangulov, Delegiannidis and Rousseau ('24+) [rates adapt to intrinsic dimension d^*]
- $\log p_0(x) = \sum_{I \subset [d] \mid I| \le d^*} f_I(x_I)$, for $f_I \beta$ -Hölder: Kwon et. al ('25+), Fan, Gu and Li ('25+)
- · ... [?]

Generative process

On $[0, T - \underline{T}]$, simulate

$$dY_t = \left(-b(T-t, Y_t) + \nabla \cdot \Sigma(T-t, Y_t) + \Sigma(T-t, Y_t)\right) dt + \sigma(T-t, Y_t) dW_t, \quad \mathbb{P}^{Y_0}(dy) \approx p_T(y) dy$$

Output:

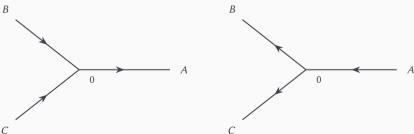
$$Y_{T-\underline{T}} \stackrel{d}{\approx} \overleftarrow{X}_{T-\underline{T}} = X_{\underline{T}} \stackrel{d}{\approx} X_0$$

Some fundamental observations

- ullet time reversal at deterministic time ${\cal T}$ forces the backward process to be time-inhomogeneous
- if p_0 has low-dimensional support \mathcal{M} , for small t and x close to \mathcal{M} , $\nabla \log p_t(x)$ is approximately orthogonal to \mathcal{M} (Stanczuk et al., ICML '24)
- initialising the generative process in a distribution that is not close to \mathbb{P}^{X_T} and simulating for $T \underline{T}$ time units will not give useful results \rightsquigarrow algorithm is not adaptive to the noise level in the data

Homogeneous time reversal

- Markov property: "the past and future of a Markov process are conditionally independent given the present"
 ** time-reversed Markov processes are Markov
- to ensure that a homogeneous Markov process remains homogeneous under time reversal, we need to reverse at a suitable random (life)time ζ. This can be
 - · a randomised stopping time such as an independent exponential time;
 - · a last exit time;
 - · a first hitting time;
 - any terminal time, that is, any stopping time T such that $T = t + T \circ \theta_t$ on $\{T > t\}$
- retaining the strong Markov property under time reversal is a bit more tricky:



h-transforms and time reversal

h-transform

For a possibly killed, homogeneous strong Markov process *X* with state space *S*, let *h* be an excessive function, that is

$$\mathbb{E}_{X}[h(X_{t})] \leq h(x)$$
 and $\lim_{t \to 0} \mathbb{E}_{X}[h(X_{t})] = h(x)$.

Then,

$$P_t^h f(x) = \mathbb{E}_x \left[\frac{h(X_t)}{h(x)} f(X_t) \mathbf{1}_{\{X_t \in S\}} \right] \mathbf{1}_{(0,\infty)}(h(x)), \quad f \in \mathcal{B}_b(\mathbb{R}^d),$$

defines a sub-Markov semigroup. The corresponding Markov process X^h is strong Markov and is called h-transform of X.

- suppose that X is a continuous and self-dual Feller process (i.e., its generator satisfies $A = A^*$)
- if X^h has a finite killing time ζ , then the time-reversed process $X_t^h = X_{\zeta-t}^h$ is homogeneous, strong Markov and is a h-transform of X.

h-transforming a killed diffusion

· consider a symmetric diffusion process

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t$$

with invariant measure m and let Z be its version killed at an independent exponential time with parameter r > 0

• as an excessive function for Z use

$$h(x) = \int G_r(x, y) \, \kappa(\mathrm{d}y)$$

for the Green kernel $G_r(x,y) = \int_0^\infty e^{-rt} p_t(x,y) \, dy$ and a representing measure κ

- $\kappa(dy) = r dy \rightsquigarrow h = 1 \text{ and } Z^h = Z$
- $\kappa(dy) = \frac{1}{G_r(x_0, y)} \beta(dy) \rightsquigarrow Z$ conditioned to have distribution β before killing if started in x_0
- Z is a killed Brownian motion and $\kappa(dy) = \sigma_R(dy)$ for the surface measure σ_R of an R-sphere $\mathbb{S}^{d-1}(R) \rightsquigarrow Z^h$ is killed at last exit from $\mathbb{S}^{d-1}(R)$

Proposition (Christensen, Strauch and LT (2025+))

1. Z^h is an Itô-diffusion with dynamics

$$dZ_t^h = (b(Z_t^h) + \Sigma(X_t) \nabla \log h(X_t)) dt + \sigma(Z_t^h) dW_t$$

outside supp κ and its distribution at the lifetime is given by

$$\mathbb{P}_{X}(Z_{\zeta-}^{h} \in dy) = \frac{G_{r}(x, y)}{h(x)} \kappa(dy)$$

2. Let $\alpha = \mathbb{P}^{Z_0^h}$. Then Z_t^h is an h-transform of Z with initial distribution $\mathbb{P}_{\alpha}(Z_{\zeta^-}^h \in \mathsf{d}y)$ and

$$\overleftarrow{h}(x) := \int \frac{G_r(x, y)}{h(y)} \alpha(dy).$$

In particular, Z^h has dynamics

$$\mathsf{d} Z_t^{\stackrel{\leftarrow}{h}} = \left(b(Z_t^{\stackrel{\leftarrow}{h}}) + \Sigma(Z_t^{\stackrel{\leftarrow}{h}}) \nabla \log \overleftarrow{h}(Z_t^{\stackrel{\leftarrow}{h}})\right) \mathsf{d} t + \sigma(Z_t^{\stackrel{\leftarrow}{h}}) \; \mathsf{d} \overline{W}_t,$$

outside supp
$$\alpha =: \mathcal{M}$$
 and $\mathbb{P}_{\alpha}(Z_{\zeta^{-}}^{h} \in dy \mid Z_{0}^{h} = x) = \frac{G_{r}(x,y)}{\tilde{h}(x)h(y)}\alpha(dy)$ for $\mathbb{P}_{\alpha}(Z_{\zeta^{-}}^{h} \in \cdot)$ -a.e. x .

Idealised algorithm:

- 1. Initialise $Z_0^{\tilde{h}} \sim \tilde{\beta} \approx \mathbb{P}_{\alpha}(Z_{\zeta-}^h)$
 - for ergodic forward process with stationary distribution μ and small exponential killing rate r > 0, choose $\tilde{\beta} = \mu$ [\Leftrightarrow ergodic diffusion model]
 - for exponentially killed BM with small killing rate r > 0, choose $\tilde{\beta} = \text{Laplace}(0, (2r)^{-1/2}\mathbb{I}_d)$ [\Leftrightarrow variance exploding diffusion model]
 - for $\kappa(dy) = \frac{1}{G_r(x_0, y)} \delta_z$, choose $\tilde{\beta} = \delta_z$
- 2. Simulate diffusion $Z^{\tilde{h}}$ until killing time and output $Z^{\tilde{h}}_{\zeta-}$

Idealised algorithm:

- 1. Initialise $Z_0^{\tilde{h}} \sim \tilde{\beta} \approx \mathbb{P}_{\alpha}(Z_{\zeta-}^h)$
 - for ergodic forward process with stationary distribution μ and small exponential killing rate r > 0, choose $\tilde{\beta} = \mu$ [\Leftrightarrow ergodic diffusion model]
 - for exponentially killed BM with small killing rate r > 0, choose $\tilde{\beta} = \text{Laplace}(0, (2r)^{-1/2}\mathbb{I}_d)$ [\Leftrightarrow variance exploding diffusion model]
 - for $\kappa(dy) = \frac{1}{G_r(x_0, y)} \delta_z$, choose $\tilde{\beta} = \delta_z$
- 2. Simulate diffusion $Z^{\tilde{h}}$ until killing time and output $Z^{\tilde{h}}_{\zeta-}$

Requirements for implementation

1. learn $\nabla \log \hat{h}$ (only a function in space – no time component);

Idealised algorithm:

- 1. Initialise $Z_0^{\tilde{h}} \sim \tilde{\beta} \approx \mathbb{P}_{\alpha}(Z_{\zeta-}^h)$
 - for ergodic forward process with stationary distribution μ and small exponential killing rate r > 0, choose $\tilde{\beta} = \mu$ [\Leftrightarrow ergodic diffusion model]
 - for exponentially killed BM with small killing rate r > 0, choose $\tilde{\beta} = \text{Laplace}(0, (2r)^{-1/2}\mathbb{I}_d)$ [\Leftrightarrow variance exploding diffusion model]
 - for $\kappa(dy) = \frac{1}{G_r(x_0, y)} \delta_z$, choose $\tilde{\beta} = \delta_z$
- 2. Simulate diffusion $Z^{\tilde{h}}$ until killing time and output $Z^{\tilde{h}}_{\zeta-}$

Requirements for implementation

- 1. learn $\nabla \log \tilde{h}$ (only a function in space no time component);
- 2. learn killing time ζ of Z^h

Learning to kill

Polarity hypothesis

Assume that $\mathcal{M} = \operatorname{supp} \alpha$ is polar for X, i.e., for any $x \in \mathbb{R}^d$, $\mathbb{P}_X(\inf\{t > 0 : X_t \in \mathcal{M}\} < \infty) = 0$.

Learning to kill

Polarity hypothesis

Assume that $\mathcal{M}=\operatorname{supp}\alpha$ is polar for X, i.e., for any $x\in\mathbb{R}^d$, $\mathbb{P}_X(\inf\{t>0\,:\,X_t\in\mathcal{M}\}<\infty)=0.$

Theorem (Christensen, Strauch and LT (2025+))

Under the polarity hypothesis, the backward process Z^h is killed at first entrance into \mathcal{M} .

Learning to kill

Polarity hypothesis

Assume that $\mathcal{M} = \operatorname{supp} \alpha$ is polar for X, i.e., for any $x \in \mathbb{R}^d$, $\mathbb{P}_X(\inf\{t > 0 : X_t \in \mathcal{M}\} < \infty) = 0$.

Theorem (Christensen, Strauch and LT (2025+))

Under the polarity hypothesis, the backward process Z^h is killed at first entrance into \mathcal{M} .

Possible strategies to estimate a δ -fattening $\mathcal{M}_{\delta} = \{x : \operatorname{dist}(x, \mathcal{M}) \leq \delta\}$ given data $X^1, \dots, X^n \stackrel{\mathrm{iid}}{\sim} \alpha$ and an estimator $\hat{\mathfrak{g}}$ of $\hat{\mathfrak{g}} := \nabla \log \hat{h}$:

- explicit plug-in approach: estimate \mathcal{M}_{δ} directly or indirectly by setting $\widehat{\mathcal{M}}_{\delta} = (\widehat{\mathcal{M}})_{\delta}$; then set $\hat{\zeta} := \inf\{t \geq 0 : Z_t^{\hat{s}} \in \widehat{\mathcal{M}}_{\delta}\}$
- implicit approach: use explosive behaviour of $\mathfrak S$ as $x\to \mathcal M$

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Suppose that \mathcal{M} is polar for X and Y solving $dY_t = \sigma(Y_t) dB_t$. Then, it a.s. holds that

$$\zeta = \inf \Big\{ t \geq 0 : \sup_{s \leq t} |\mathfrak{S}(Z_s^{\overleftarrow{h}})| = \infty \Big\} = \inf \Big\{ t \geq 0 : \|\mathfrak{S}(Z^{\overleftarrow{h}})\|_{L^2([0,t])} = \infty \Big\}.$$

Denoising score matching

• for $\mathbb{P}_{\alpha}(Z_{7}^{h} \in \cdot)$ -a.e. x

$$\begin{split} \mathfrak{S}(x) &= \nabla \log \widetilde{h}(x) = \frac{1}{\widetilde{h}(x)} \int \nabla_x G_r(x, y) \frac{1}{h(y)} \, \alpha(\mathrm{d}y) = \int \nabla_x \log G_r(x, y) \frac{G_r(x, y)}{\widetilde{h}(x)h(y)} \, \alpha(\mathrm{d}y) \\ &= \mathbb{E} \big[\nabla_x \log G_r(x, Z_{\zeta-}^h) \mid Z_0^h = x \big] \\ &= \mathbb{E}_{\alpha} \big[\nabla_x \log G_r(x, Z_0^h) \mid Z_{\zeta-}^h = x \big] \end{split}$$

• this implies that on $\mathbb{R}^d \setminus \mathcal{M}_{\delta}$, \mathfrak{s} agrees $\mathbb{P}_{\alpha}(Z^h_{\gamma-} \in \cdot)$ -a.e. with the minimiser of

$$\mathcal{B}(\mathbb{R}^d; \mathbb{R}^d) \ni s \mapsto \mathbb{E}_{\alpha} \Big[\| s(Z_{\zeta^-}^h) - \nabla \log G_r(Z_0^h, Z_{\zeta^-}^h) \|^2 \mathbf{1}_{\{ \| Z_{\zeta^-}^h - Z_0^h \| > \delta \}} \Big]$$

• note that if $Z^h = Z$, then $\zeta \sim \operatorname{Exp}(r)$ independent of X, $Z_{\zeta-} = X_{\zeta}$ has full support and we have

$$\mathbb{E}_{\alpha}\Big[\|s(Z_{\zeta-}^h) - \nabla \log G_r(Z_0^h, Z_{\zeta-}^h)\|^2 \mathbf{1}_{\{\|Z_{\zeta-}^h - Z_0^h\| > \delta\}} \Big] = r \mathbb{E}_{\alpha}\Big[\int_0^{\zeta} \|s(Z_t^h) - \nabla \log G_r(Z_0^h, Z_t^h)\|^2 \mathbf{1}_{\{\|Z_t^h - Z_0^h\| > \delta\}} dt \Big]$$

- we don't have to start the backward process approximately in $\mathbb{P}_{\alpha}(Z_{\zeta_{-}}^{h} \in dy)$: it will always be killed on the data support \mathscr{M} and different initialisations will yield different output distributions supported on $\mathscr{M} \rightsquigarrow$ natural conditioning
- a natural question is therefore what happens if we don't start the generative process from pure noise but something more informative, say a masked or moderately noised picture

• it turns out that the natural conditioning aspect entails a blessing of dimensionality

Let Z be an exponentially killed Brownian motion. Then,

$$\widetilde{h}(x) = \int G_r(x, y) \, \alpha(\mathrm{d}y), \quad G_r(x, y) = 2(2\pi)^{-d/2} r \Big(\frac{\sqrt{2r}}{|x - y|} \Big)^{\frac{d-2}{2}} K_{\frac{d-2}{2}} \Big(\frac{\sqrt{2r}}{|x - y|} \Big).$$

For large *d*,

$$\nabla \log \overleftarrow{h}(x) \approx d \frac{\int \frac{x-y}{|x-y|^d} \alpha(\mathrm{d}y)}{\int |x-y|^{2-d} \alpha(\mathrm{d}y)}$$

and thus, if there is a unique projection $x^* \in \arg\min_{y \in \mathcal{M}} |x - y|$ of x onto \mathcal{M} , then

$$\nabla \log \overleftarrow{h}(x) \approx d \frac{x^* - x}{|x^* - x|^2} = d \frac{\operatorname{sign}(x^* - x)}{|x^* - x|}$$

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Let $\delta, \varepsilon > 0$ and fix an observation $x \in \mathbb{R}^d$. If $\alpha(B(x,r)) > \varepsilon$ for some ball B(x,r) with radius r > 0 around y, then

$$\mathbb{P}\Big(Z_{\zeta^{-}}^{\tilde{h}} \in \mathcal{M} \cap B(x, (1+\delta)r) \mid Z_{0}^{\tilde{h}} = x\Big) \geq 1 - \frac{1}{\varepsilon}(1+\delta)^{2-d}.$$

Consider now estimators $\hat{\mathfrak{g}}_n$, an independent Brownian motion W and let $\widehat{Z}^{\hat{\mathfrak{g}}_n}$ be the process solving

$$\mathrm{d}\widehat{Z}_t^{\hat{\hat{\mathbf{g}}}_n} = \hat{\mathbf{g}}_n(\widehat{Z}_t^{\hat{\hat{\mathbf{g}}}_n})\mathbf{1}_{\{t \leq \hat{\zeta}\}}\,\mathrm{d}\,t + \mathbf{1}_{\{t \leq \tilde{\zeta}\}}\,\mathrm{d}\,W_t, \quad \hat{\zeta} := \inf\Bigl\{t \geq 0 \,:\, \|\widehat{Z}^{\hat{\mathbf{g}}_n}\|_{L^2[0,t]} > M\Bigr\}.$$

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Fix an observation $x \in \mathbb{R}^d$. Suppose that

• for any $\tilde{\delta}$, δ , $\varepsilon > 0$ it holds for sufficiently large n that

$$\mathbb{P}\left(\left\|\left(\hat{\mathfrak{g}}_{n}(Z^{\tilde{h}})-\mathfrak{g}(Z^{\tilde{h}})\right)\mathbf{1}_{\left\{Z^{\tilde{h}}\notin\mathcal{M}_{\tilde{\delta}}\right\}}\right\|_{L^{2}(\zeta)}>\delta\left|Z_{0}^{\tilde{h}}=x\right)<\varepsilon\right.$$

• for any $n\in\mathbb{N}$ and $\tilde{\delta}>0$, the function $\hat{\mathfrak{g}}_n$ is $L_{\tilde{\delta}}$ -Lipschitz on $\mathcal{M}_{\tilde{\delta}}^{\mathsf{c}}$

Let $\delta, \varepsilon, \tilde{\delta}, \tilde{\varepsilon} > 0$. If $\alpha(B(x, r)) > \varepsilon$, then, for sufficiently large M > 0 and $n \in \mathbb{N}$,

$$\mathbb{P}(\widehat{Z}_{\hat{\zeta}}^{\hat{g}_n} \in \mathcal{M}_{\tilde{\delta}} \cap B(x, (1+\delta)r) \, \big| \, \widehat{Z}_0^{\hat{g}_n} = x) > 1 - \frac{1}{\varepsilon} (1+\delta)^{2-d} - \tilde{\varepsilon}.$$

Consider now estimators $\hat{\mathfrak{g}}_n$, an independent Brownian motion W and let $\hat{Z}^{\hat{\mathfrak{g}}_n}$ be the process solving

$$\mathrm{d}\widehat{Z}_t^{\hat{\aleph}_n} = \hat{\aleph}_n(\widehat{Z}_t^{\hat{\aleph}_n})\mathbf{1}_{\{t \leq \hat{\zeta}\}}\,\mathrm{d}t + \mathbf{1}_{\{t \leq \tilde{\zeta}\}}\,\mathrm{d}W_t, \quad \hat{\zeta} := \inf\Bigl\{t \geq 0 \,:\, \|\widehat{Z}^{\hat{\aleph}_n}\|_{L^2[0,t]} > M\Bigr\}.$$

Theorem (Christensen, Kallsen, Strauch and LT (2025+))

Fix an observation $x \in \mathbb{R}^d$. Suppose that

• for any $\tilde{\delta}, \delta, \varepsilon > 0$ it holds for sufficiently large n that

$$\mathbb{P}\left(\left\|\left(\hat{\mathfrak{S}}_{n}(Z^{\tilde{h}})-\mathfrak{S}(Z^{\tilde{h}})\right)\mathbf{1}_{\left\{Z^{\tilde{h}}\notin\mathcal{M}_{\tilde{\delta}}\right\}}\right\|_{L^{2}(\zeta)}>\delta\left|Z_{0}^{\tilde{h}}=x\right)<\varepsilon\right.$$

• for any $n\in\mathbb{N}$ and $\tilde{\delta}>0$, the function $\hat{\mathfrak{g}}_n$ is $L_{\tilde{\delta}}$ -Lipschitz on $\mathcal{M}_{\tilde{\delta}}^{\mathsf{c}}$

Let $\delta, \varepsilon, \tilde{\delta}, \tilde{\varepsilon} > 0$. If $\alpha(B(x, r)) > \varepsilon$, then, for sufficiently large M > 0 and $n \in \mathbb{N}$,

$$\mathbb{P}\big(\widehat{Z}_{\hat{\zeta}}^{\hat{g}_n} \in \mathcal{M}_{\tilde{\delta}} \cap B(x,(1+\delta)r) \, \big| \, \widehat{Z}_0^{\hat{g}_n} = x \big) \, > \, 1 - \frac{1}{\varepsilon} (1+\delta)^{2-d} - \tilde{\varepsilon}.$$

Thank you for your attention!