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Some known concentration results for Markov processes

Let X be a nice ergodic Markov processes on Rd with semigroup (Pt)t⩾0, generator L and invariant

distribution µ. We are interested in

Cν(f ,T , x) := Pν
(∣∣∣ 1

T

∫T

0

f (Xt) dt − µ(f )
∣∣∣ > x

)
, f ∈ L2(µ), x ,T > 0.

Bounds have been mostly studied with two approaches (Lyapunov vs. Poincaré [BCG08]):

1. Functional inequalities:

• Poincaré inequality:

Varµ(g) := µ(g2) −µ(g)2 ⩽ CP⟨−Lg , g⟩µ := CP

∫
g(x)(−Lg(x))µ(dx), g ∈ D(L).

[Lez01] For ∥f ∥∞ < ∞ and ν ≪ µ, dν/ dµ ∈ L2(µ),

Cν(f ,T , x) ⩽ 2
∥∥∥dν
dµ

∥∥∥
L2(µ)

exp
(
−

Tx2

2(σ2(f ) + 2CP∥f ∥∞x)

)
,

• log-Sobolev inequality: (Pt)t⩾0 symmetric and

Entµ(g
2) := µ(g2 log g2) −µ(g2) logµ(g2) ⩽ 2CLS⟨−Lg , g⟩µ, g ∈ D(L).

[GGW14] For |f (x)| ≲ 1+ ∥x∥2,

Cν(f ,T , x) ⩽ 2
∥∥∥dν
dµ

∥∥∥
L2(µ)

exp
(
−

Tx2

2(σ2(f ) + CP(Λ∗)−1(2CLS/CP)x)

)

2/12



Some known concentration results for Markov processes

Let X be a nice ergodic Markov processes on Rd with semigroup (Pt)t⩾0, generator L and invariant

distribution µ. We are interested in

Cν(f ,T , x) := Pν
(∣∣∣ 1

T

∫T

0

f (Xt) dt − µ(f )
∣∣∣ > x

)
, f ∈ L2(µ), x ,T > 0.

Bounds have been mostly studied with two approaches (Lyapunov vs. Poincaré [BCG08]):
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• Poincaré inequality:

Varµ(g) := µ(g2) −µ(g)2 ⩽ CP⟨−Lg , g⟩µ := CP

∫
g(x)(−Lg(x))µ(dx), g ∈ D(L).

[Lez01] For ∥f ∥∞ < ∞ and ν ≪ µ, dν/ dµ ∈ L2(µ),

Cν(f ,T , x) ⩽ 2
∥∥∥dν
dµ

∥∥∥
L2(µ)

exp
(
−

Tx2

2(σ2(f ) + 2CP∥f ∥∞x)

)
,

• log-Sobolev inequality: (Pt)t⩾0 symmetric and

Entµ(g
2) := µ(g2 log g2) −µ(g2) logµ(g2) ⩽ 2CLS⟨−Lg , g⟩µ, g ∈ D(L).

[GGW14] For |f (x)| ≲ 1+ ∥x∥2,

Cν(f ,T , x) ⩽ 2
∥∥∥dν
dµ

∥∥∥
L2(µ)

exp
(
−

Tx2

2(σ2(f ) + CP(Λ∗)−1(2CLS/CP)x)

)

2/12



Some known concentration results for Markov processes

Let X be a nice ergodic Markov processes on Rd with semigroup (Pt)t⩾0, generator L and invariant

distribution µ. We are interested in

Cν(f ,T , x) := Pν
(∣∣∣ 1

T

∫T

0

f (Xt) dt − µ(f )
∣∣∣ > x

)
, f ∈ L2(µ), x ,T > 0.

Bounds have been mostly studied with two approaches (Lyapunov vs. Poincaré [BCG08]):
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Some known concentration results for Markov processes

2. Mixing assumptions: for q ∈ [0, 1),

αν(t) := sup
s⩾0

sup
A∈σ(Xu ,u⩽s),B∈σ(Xu ,u⩾s+t)

|Pν(A ∩ B) − Pν(A)Pν(B)| ≲ exp(−t
1−q
1+q ).

For reasonable ν guaranteed given (sub)exponential ergodicity of (Pt), i.e.,

∥Pt(x , ·) − µ∥TV ≲ V (x) exp(−t
1−q
1+q ).

[CG08] For ∥f ∥∞ <∞,

Cµ(f ,T , x) ⩽ 2 exp

(
− c(q)

(
x
√
T

∥f ∥∞
)1−q)

, x ⩾ C (c, q)/
√
T .
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Martingale approximation for diffusions

• Let X be a (weak) solution to the SDE

dXt = b(Xt) dt + σ(Xt) dWt ,

b ∈ Liploc(R
d ;Rd ),σ ∈ Lip(Rd ;Rd×d ) and bounded, a := σσ⊤ s.t. λ−I ⩽ a(x) ⩽ λ+I, ∀x

• Let L = b⊤∇+
∑

i ,j ai ,j∂xi∂xj and suppose that for given f : Rd → R the Poisson equation Lg = f

has some sufficiently regular solution L−1[f ]

• By Itō’s formula:∫ t

0

f (Xs) ds =

∫ t

0

(−∇L−1[f ](Xs))
⊤σ(Xs) dWs︸ ︷︷ ︸

(loc.) martingale

+L−1[f ](Xt) − L−1[f ](X0)︸ ︷︷ ︸
remainder

⇝ If we have some control on L−1[f ],∇L−1[f ] we can use martingale approximation for derivation of

concentration bounds

• employed in case d = 1 for exponentially ergodic diffusions in [AWS21; GP07] and for d ⩾ 1 and

periodic drift [NR20] in the context of drift estimation
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Poisson equation under subexponential drift assumptions

Assume ∥b(x)∥ ≲ 1+ ∥x∥κ and for some q ∈ (−1, 1), r,A > 0,

⟨b(x), x/∥x∥⟩ ⩽ −r∥x∥−q, ∥x∥ > A. (𝒟(q))

[DFG09] implies

∥Pt(x , ·) − µ∥TV ≲ exp
(
ι∥x∥1−q+

)
exp

(
− ι′t

1−q+
1+q+

)
and

∫
Rd

exp
(
ι∥x∥1−q+

)
µ(dx) <∞.

[PV01; BRS18] If µ(f ) = 0 and |f (x)| ≲ 1+ ∥x∥η, then for L−1[f ](x) := −
∫∞
0 Pt f (x) dt we have

L−1[f ] ∈𝒲2,p
loc (R

d ) for any p > 1, L−1[f ] solves the Poisson equation and

|L−1[f ](x)| ≲ 1+ ∥x∥η+1+q, ∥∇L−1[f ](x)∥ ≲ 1+ ∥x∥η+κ+1+q.
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Continuous-time concentration result

Theorem [TAWS23]

Assume (𝒟(q)), ∥b(x)∥ ≲ 1+ ∥x∥κ and |f (x)| ⩽ L(1+ ∥x∥η). Let

ρ(η, κ, q) :=

1/(1− q+), η = 0

1
2
+ η+κ+1+q

1−q+
, η > 0.

Then, there exists a constant c > 0 s.t. for any x ⩾ 2/
√
T ,

Cµ(f ,T , x) := Pµ
(∣∣∣ 1

T

∫T

0

f (Xt) dt − µ(f )
∣∣∣ > x

)
⩽ exp

(
− c

(x√T

L

)1/ρ(η,κ,q))
.

Poincaré, η = 0 log-Sobolev, η ⩽ 2 subexponential, η > 0

log(1/δ)
ε

log(1/δ)
ε

log(1/δ)2ρ(η,κ,q)

ε2

Table 1: Order of sufficient sample length Ψ(ε,δ) s.t. (ε,δ)-PAC-bound Pµ(|µT (f ) −µ(f )| ⩽ ε) ⩾ 1− δ

holds for T ⩾ Ψ(ε,δ)
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Discrete-time concentration result

Let observations (Xk∆)k=1,...,n be given for some ∆ ⩽ 1. Discrete MC-estimator:

H∆
n (f ) :=

1

n∆

n∑
k=1

f (Xk∆)∆.

Then for Ht(f ) := t−1
∫T

0 f (Xt) dt, f = f̃ − µ(f̃ ), Φk(t) :=
∫k∆

t (Lf̃ (Xs) − µ(Lf̃ )) ds,

ωk(t) :=
∫k∆

t ∇f̃ (Xs)
⊤σ(Xs) dWs ,

n∆(H∆
n (f ) −Hn∆(f )) = µ(Lf̃ )

n∆2

2
+

n∑
k=1

∫ k∆

(k−1)∆

Φk(t) dt +
n∑

k=1

∫ k∆

(k−1)∆

ωk(t) dt.
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Assume (𝒟(q)), ∥b(x)∥ ≲ 1+ ∥x∥κ and ∥Dk f (x)∥ ≲ 1+ ∥x∥ηk , k = 0, 1, 2. Define α := (κ+ η1)∨ η2,

and let γ̃ > 1+ q, r > 1, s.t. γ̃− (1+ q) > r(α∨ (1+ q)/(r − 1)). Then, for p ⩾ 2,

∥H∆
n (f ) − µ(f )∥Lp(Pµ) ⩽ D

(
∆+

√
∆

n
p

max{(γ̃+2α+1−q+)/2,η1+1−q+}
1−q+ +

1√
n∆

p
1
2+

η+κ+1+q
1−q+

)
:= Φ(n,∆, p),

and

Pµ
(
|H∆

n (f ) − µ(f )| > eΦ(n,∆, x)
)
⩽ e−x , x ⩾ 2.
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Statistical Application



Lasso for parametrized drifts

For a given dictionary {ψ1, . . . ,ψN } of Lipschitz functions ψi : R
d → Rd , let X be the strong solution to

dXt = bθ0(Xt) dt + σ(Xt) dWt , where bθ0(x) =
N∑
i=1

θ0i ψi (x).

Let ψ(x) = (ψ1(x), . . . ,ψN(x)), Ψ(x) := (σ−1(x)ψ(x))⊤σ−1(x)ψ(x) and ΨT := T−1
∫T

0 Ψ(Xt) dt.

Then for bθ := ψθ, negative log-likelihood given by

ℒT (θ) = ℒT (bθ) = θ
⊤ΨTθ− 2θT

1

T

∫T

0

ψ(Xt)
⊤a−1(Xt) dXt .

Goal

Study convergence guarantees of Lasso estimator

θ̂T := argmin
θ∈RN

{
ℒT (θ) + λ∥θ∥1

}
,

under sparsity assumptions on θ0, i.e., ∥θ0∥0 ⩽ s0.
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Assumptions and examples

We assume

1. ∃A, r > 0, q ∈ [−1, 1) : ⟨bθ0(x), x/∥x∥⟩ ⩽ −r∥x∥−q, ∥x∥ > A;

2. λmax(Ψ(x)) ≲ 1+ ∥x∥2η;

3. ΨT is positive definite Pθ0 -a.s.

Example 1:

[GM19;

CMP20]

Ornstein–Uhlenbeck process: N = d2,

bθ0(x) = Aθ0x .

If Aθ0 is symmetric, negative definite ⇝ q = −1,η = 1.

Example 2: N = 2d2,

bθ0(x) = Aθ0x + Bθ0x(α+ ∥x∥)−(1+q̃).

If Aθ0 is singular and negative semi-definite and Bθ0 is negative definite ⇝ q = q̃,η = 1

9/12



Restricted eigenvalue property

• Proof of high probability bounds relies on having good control over the spectrum of the empirical

Gram matrix ΨT = 1
T

∫T

0 Ψ(Xt) dt

⇝ control

inf
θ∈𝒮

θ⊤ΨTθ = inf
θ∈𝒮

1

T

∫T

0

∥σ−1(Xt)bθ(Xt)∥2 dt,

for appropriate 𝒮 ⊂ RN in terms of λmin(E[ΨT ]) =: λ
∞
min via concentration inequality for

(unbounded) bθ and covering arguments

• for some sparsity dependent 𝒮(s), we obtain

P
(

inf
θ∈𝒮(s)

θ⊤ΨTθ ⩾
λ∞min

2

)
⩾ 1− ε,

for

T ⩾ T0(ε, s,N, q,η) ∼
{
log

(
212s

(
N ∧

(
eN
2s

)2s))
+ log(1/ε)

} 6η+2q+3−q+
1−q+ · 1

(λ∞min)
2
.
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High probability bound

Theorem [TAWS23]

Suppose ∥θ0∥0 ⩽ s0 and fix ε ∈ (0, 1). If T ⩾ T0(ε/3, s0,N, q,η), then for the choice

λ ≍
√

log(N/ε)/T with probability at least 1− ε,

∥θ̂T − θ0∥2L2 := (θ̂T − θ0)
⊤ΨT (θ̂T − θ0) ≲

log(N/ε)s0
T

.
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Summary

• we provide concentration inequalities for subexponentially ergodic diffusions and polynomially

bounded functions given continuous observations

• concentration inequalities for sampled chains are derived from the continuous observation result

• we demonstrate implications for sufficient sample size guarantees in the context of sparse

estimation of parametrized diffusion models

• not part of this talk: finite sample error bounds for Langevin SDEs with moderately heavy tails

Paper available as

“Trottner, L., Aeckerle-Willems, C., and C. Strauch. Concentration analysis of multivariate elliptic

diffusions. Journal of Machine Learning Research 24 (2023), paper no. 106, pp. 1–38.”

Thank you for your attention!
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