Markov additive friendships

43rd Conference on Stochastic Processes and their Applications - Lisbon 2023

Lukas Trottner joint work with Leif Döring and Alex Watson 24 July 2023

Aarhus University

University of Mannheim

University College London

Theory of friends for Lévy processes

- let ξ be a Lévy process with characteristic exponent $\psi,$ i.e., $\mathbb{E}[e^{i\theta\xi_t}]=e^{t\psi(\theta)}$
- the ascending ladder height process H^+ is a subordinator tracking the new suprema of ξ
- the descending ladder height process H^- plays the same role for the infima
- for ψ^{\pm} denoting the characteristic exponents of H^{\pm} , it holds

 $\psi(\theta) = -\psi^-(-\theta)\psi^+(\theta)$

- let ξ be a Lévy process with characteristic exponent $\psi,$ i.e., $\mathbb{E}[e^{i\theta\xi_t}]=e^{t\psi(\theta)}$
- the ascending ladder height process H^+ is a subordinator tracking the new suprema of ξ
- the descending ladder height process H^- plays the same role for the infima
- for ψ^{\pm} denoting the characteristic exponents of H^{\pm} , it holds

 $\psi(\theta) = -\psi^-(-\theta)\psi^+(\theta)$

Problem

Given a LK exponent ψ the Wiener–Hopf factors can very rarely be explicitly determined.

- start with two subordinators ${\it H}^{\pm}$ having LK exponents ψ^{\pm}
- when is there a Lévy process ξ with LK exponent ψ such that $\psi=-\psi^-(-\cdot)\psi^+?$
- when such ξ exists, we call H^{\pm} friends and ξ the bonding process

The Theorem of friends

- d^{\pm} drift of H^{\pm}
- Π^{\pm} Lévy measure of H^{\pm}
- H[±] are compatible if d[∓] > 0 implies that Π[±] has a càdlàg density ∂Π[±] that can be expressed as the tail of a signed measure

The Theorem of friends

- d^{\pm} drift of H^{\pm}
- Π^{\pm} Lévy measure of H^{\pm}
- H[±] are compatible if d[∓] > 0 implies that Π[±] has a càdlàg density ∂Π[±] that can be expressed as the tail of a signed measure

Theorem (Vigon, 2002)

 H^{\pm} are friends if, and only if, they are compatible and the function

$$\Upsilon(x) = \begin{cases} \int_{(0,\infty)} (\Pi^{-}(y,\infty) - \psi^{-}(0)) \Pi^{+}(x+dy) + d^{-}\partial\Pi^{+}(x), & x > 0, \\ \int_{(0,\infty)} (\Pi^{+}(y,\infty) - \psi^{+}(0)) \Pi^{-}(-x+dy) + d^{+}\partial\Pi^{-}(-x), & x < 0, \end{cases}$$

is a.e. increasing on $(0, \infty)$ and a.e. decreasing on $(-\infty, 0)$.

Then, Υ is a.e. the right/left tail of the Lévy measure of the bonding process.

- a subordinator H^+ is called philanthropist if its Lévy measure admits a decreasing density
- equivalently, philanthropists are subordinators that are friends with pure drift subordinators $H_t^- = d^- t$
- \rightsquigarrow spectrally negative Lévy processes that do not drift to $-\infty$ can be factorised into a philanthropist and a pure drift

- a subordinator H^+ is called philanthropist if its Lévy measure admits a decreasing density
- equivalently, philanthropists are subordinators that are friends with pure drift subordinators $H_t^- = d^- t$
- \rightsquigarrow spectrally negative Lévy processes that do not drift to $-\infty$ can be factorised into a philanthropist and a pure drift

Theorem (Vigon, 2002)

Any two philanthropists are friends.

Markov additive friendships

• a nice Markov process (ξ, J) is a MAP on $\mathbb{R} \times \{1, \dots, n\}$ if

 $\mathbb{E}^{0,i} \big[f(\xi_{t+s} - \xi_t, J_{t+s}) \mid \mathcal{F}_t \big] \mathbf{1}_{\{t < \zeta\}} = \mathbb{E}^{0,J_t} [f(\xi_s, J_s)] \mathbf{1}_{\{t < \zeta\}}$

- equivalently, a MAP can be characterised as a regime-switching Lévy process
 - $\xi^{(i)}$ is a Lévy process for any phase $i \in [n]$
 - J is a Markov chain with transition matrix Q
 - when J is in state i, run an independent copy of $\xi^{(i)}$
 - phase switches from *i* to *j* trigger an additional jump with distribution $F_{i,j}$

Analytic characterisation of MAPs

- ψ_i LK exponent of $\xi^{(i)}$
- Π_i Lévy measure of $\xi^{(i)}$ and denote $\Pi_{i,j} \coloneqq q_{i,j}F_{i,j}$
- call $\mathbf{\Pi} = (\Pi_{i,j})_{i,j \in [n]}$ Lévy measure matrix of ξ

Ψ

• we have $\mathbb{E}^{0,i}[e^{i\theta\xi_t}\mathbf{1}_{\{J_t=j\}}] = (\exp(t\Psi(\theta)))_{i,j}$ with characteristic matrix exponent

$$\begin{aligned} (\boldsymbol{\theta}) &= \mathsf{diag}\big((\psi_i(\boldsymbol{\theta}))_{i \in [n]}\big) + \boldsymbol{Q} \odot \big(\widehat{F_{i,j}}(\boldsymbol{\theta})\big)_{i,j \in [n]} \\ &= \begin{bmatrix} \psi_1(\boldsymbol{\theta}) + q_{1,1} & \widehat{\Pi}_{1,2}(\boldsymbol{\theta}) & \cdots & \widehat{\Pi}_{1,n}(\boldsymbol{\theta}) \\ \widehat{\Pi}_{2,1}(\boldsymbol{\theta}) & \psi_2(\boldsymbol{\theta}) + q_{2,2} & \cdots & \widehat{\Pi}_{2,n}(\boldsymbol{\theta}) \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{\Pi}_{n,1}(\boldsymbol{\theta}) & \widehat{\Pi}_{n,2}(\boldsymbol{\theta}) & \cdots & \psi_n(\boldsymbol{\theta}) + q_{n,n} \end{bmatrix} \end{aligned}$$

- ascending/descending ladder height MAPs (H[±], J[±]): ordinator H[±] tracks new suprema/infima of ξ and J[±] tracks phases during which they occur
- they are MAP subordinators (increasing ordinators) with matrix exponents Ψ^\pm
- we always assume that J is irreducible and hence has an invariant distribution represented by a vector π

Theorem [DDK17, I17, DTW23+]

$$\Psi(\theta) = -\Delta_{\pi}^{-1}\Psi^{-}(-\theta)\Delta_{\pi}\Psi^{+}(\theta),$$

where Δ_{π} is the diagonal matrix containing π .

The inverse problem

- we call a MAP subordinator (H^+, J^+) a π -friend of (H^-, J^-) if
 - 1. $\Psi \coloneqq -\Delta_{\pi}^{-1}\Psi^{-}(-\cdot)\Delta_{\pi}\Psi^{+}$ is a characteristic MAP exponent 2. $\pi^{\top}\Psi(0) \leqslant \mathbf{0}^{\top}$
- then, a MAP (ξ, J) with matrix exponent Ψ is called bonding MAP
- the second condition ensures that
 - π is a valid candidate for an invariant distribution of J
 - (H⁺, J⁺) is a π-friend of (H⁻, J⁻) iff (H⁻, J⁻) is a π-friend of (H⁺, J⁺) → symmetric relation and the bonding MAP between (H⁻, J⁻) and (H⁺, J⁺) is the dual MAP of (ξ, J)

The inverse problem

- we call a MAP subordinator (H^+, J^+) a π -friend of (H^-, J^-) if
 - 1. $\Psi \coloneqq -\Delta_{\pi}^{-1}\Psi^{-}(-\cdot)\Delta_{\pi}\Psi^{+}$ is a characteristic MAP exponent 2. $\pi^{\top}\Psi(0) \leqslant \mathbf{0}^{\top}$
- then, a MAP (ξ, J) with matrix exponent Ψ is called bonding MAP
- the second condition ensures that
 - π is a valid candidate for an invariant distribution of J
 - (H⁺, J⁺) is a π-friend of (H⁻, J⁻) iff (H⁻, J⁻) is a π-friend of (H⁺, J⁺) → symmetric relation and the bonding MAP between (H⁻, J⁻) and (H⁺, J⁺) is the dual MAP of (ξ, J)

Questions

- 1. Are there necessary and sufficient conditions for π -friendship generalising Vigon's characterisation of Lévy friendships?
- 2. Is there a concept of MAP philanthropy?

π -compatibility

 (H^+,J^+) and (H^-,J^-) are called $\pi ext{-compatible}$ if

- 1. if $d_i^{\mp} > 0$, then $\Pi_{i,j}^{\pm}$ restricted to $(0, \infty)$ has a càdlàg density $\partial \Pi_{i,j}^{\pm}$ and $\partial \Pi_{i,i}^{\pm}$ can be expressed as the tail of a signed measure
- 2. balance conditions on the characteristics that in particular require
 - $q_{i,j}^+ d_i^- F_{i,j}^+(\{0\}) = \frac{\pi(j)}{\pi(i)} q_{j,i}^- d_i^+ F_{j,i}^-(\{0\})$
 - the function

$$\begin{split} x \mapsto q_{i,j}^+ \left(\int_0^\infty \mathbf{1}_{\{y > x\}} \overline{\Pi}_i^-(y - x) F_{i,j}^+(\mathrm{d}y) + d_i^- f_{i,j}^+(x) \right) \\ &- \frac{\pi(j)}{\pi(i)} q_{j,i}^- \left(\int_0^\infty \mathbf{1}_{\{-x < y\}} \overline{\Pi}_j^+(x + y) F_{j,i}^-(\mathrm{d}y) + d_j^+ f_{j,i}^-(-x) \right) \end{split}$$

is a.e. equal to a right-continuous, bounded variation function converging to 0 at $\pm\infty$ 3. the vectors $-\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)\mathbf{1}$ and $-\pi^{\top}\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)$ are nonnegative

π -compatibility

 (H^+,J^+) and (H^-,J^-) are called $\pi\text{-compatible}$ if

- 1. if $d_i^{\mp} > 0$, then $\Pi_{i,j}^{\pm}$ restricted to $(0, \infty)$ has a càdlàg density $\partial \Pi_{i,j}^{\pm}$ and $\partial \Pi_{i,i}^{\pm}$ can be expressed as the tail of a signed measure
- 2. balance conditions on the characteristics that in particular require
 - $q_{i,j}^+ d_i^- F_{i,j}^+(\{0\}) = \frac{\pi(j)}{\pi(i)} q_{j,i}^- d_i^+ F_{j,i}^-(\{0\})$
 - the function

$$\begin{split} x \mapsto q_{i,j}^+ \left(\int_0^\infty \mathbf{1}_{\{y > x\}} \overline{\Pi}_i^-(y - x) F_{i,j}^+(\mathrm{d}y) + d_i^- f_{i,j}^+(x) \right) \\ &- \frac{\pi(j)}{\pi(i)} q_{j,i}^- \left(\int_0^\infty \mathbf{1}_{\{-x < y\}} \overline{\Pi}_j^+(x + y) F_{j,i}^-(\mathrm{d}y) + d_j^+ f_{j,i}^-(-x) \right) \end{split}$$

is a.e. equal to a right-continuous, bounded variation function converging to 0 at $\pm\infty$ 3. the vectors $-\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)\mathbf{1}$ and $-\pi^{\top}\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)$ are nonnegative

 π -compatibility is necessary for π -friendship \rightsquigarrow There are no MAP philanthropists!

Theorem (Döring, T. and Watson, 2023+)

 (H^+, J^+) and (H^-, J^-) are π -friends if, and only if, they are π -compatible and the matrix-valued function

$$\boldsymbol{\Upsilon}(x) = \begin{cases} \left(\int_{x+}^{\infty} \Delta_{\pi}^{-1} \left(\overline{\boldsymbol{\Pi}}^{-}(y-x) - \Psi^{-}(0) \right)^{\top} \Delta_{\pi} \, \boldsymbol{\Pi}^{+}(dy) + \Delta_{d}^{-} \partial \boldsymbol{\Pi}^{+}(x) \right), & x > 0, \\ \left(\int_{(-x)+}^{\infty} \Delta_{\pi}^{-1} \left(\boldsymbol{\Pi}^{-}(dy) \right)^{\top} \Delta_{\pi} \left(\overline{\boldsymbol{\Pi}}^{+}(y+x) - \Psi^{+}(0) \right) + \Delta_{\pi}^{-1} \left(\Delta_{d}^{+} \partial \boldsymbol{\Pi}^{-}(-x) \right)^{\top} \Delta_{\pi} \right), & x < 0, \end{cases}$$

is a.e. equal to a function decreasing on $(0,\infty)$ and increasing on $(-\infty,0)$.

Then, Υ is a.e. the right/left tail of the Lévy measure matrix of the bonding MAP.

We call (H^+, J^+) and $(H^-, J^-) \pi$ -fellows if they have decreasing Lévy density matrices $\partial \Pi^+$ and $\partial \Pi^-$ on $(0, \infty)$, and the matrix functions

$$-\Delta_{\boldsymbol{\pi}}^{-1}\Psi^{-}(0)^{\top}\Delta_{\boldsymbol{\pi}}\overline{\boldsymbol{\Pi}}^{+}(x) + \Delta_{\boldsymbol{d}}^{-}\partial\boldsymbol{\Pi}^{+}(x), \quad x > 0,$$

and

$$-\Delta_{\boldsymbol{\pi}}^{-1}\Psi^{+}(0)^{\top}\Delta_{\boldsymbol{\pi}}\overline{\boldsymbol{\Pi}}^{-}(x) + \Delta_{\boldsymbol{d}}^{+}\partial\boldsymbol{\Pi}^{-}(x), \quad x > 0,$$

are decreasing.

Note: Any two Lévy fellows are Lévy philanthropists and therefore friends.

Lemma (Döring, T. and Watson, 2023+)

A MAP subordinator (H^+, J^+) with decreasing Lévy density matrix is a π -friend of a pure drift MAP (H^-, J^-) (that is, $H_t^- = \int_0^t d_{J_s^-}^- ds$) if, and only if, they are π -compatible π -fellows.

Lemma (Döring, T. and Watson, 2023+)

A MAP subordinator (H^+, J^+) with decreasing Lévy density matrix is a π -friend of a pure drift MAP (H^-, J^-) (that is, $H_t^- = \int_0^t d_{J_s^-} ds$) if, and only if, they are π -compatible π -fellows.

Recall: Any two Lévy philanthropists are friends.

Lemma (Döring, T. and Watson, 2023+)

A MAP subordinator (H^+, J^+) with decreasing Lévy density matrix is a π -friend of a pure drift MAP (H^-, J^-) (that is, $H_t^- = \int_0^t d_{J_s^-}^- ds$) if, and only if, they are π -compatible π -fellows.

Recall: Any two Lévy philanthropists are friends.

Theorem (Döring, T. and Watson, 2023+)

Any two π -compatible π -fellows are π -friends.

- only known MAP WH-factorisation is from the deep factorisation of the stable process
- to generate explicit friendships it is crucial to find manageable criteria for π -compatibility
- we develop such criteria in two cases
 - 1. at least one of the putative friends is a pure drift
 - 2. both candidates have zero drift parts and no transitional atoms (i.e., $q_{i,j}^{\pm}F_{i,j}^{\pm}(\{0\}) = 0$)
- the first case allows us to give a general construction principle for spectrally one-sided MAPs and modulated Brownian motions starting from the WH-factors
- combining the compatibility criteria from both cases, we construct MAPs jumping in both directions (Markov modulated double exponential jump diffusions)

• the matrix Wiener–Hopf factorisation tells us that any irreducible MAP is a bonding process and that the corresponding friends can be chosen as the ascending/descending ladder height processes

- the matrix Wiener–Hopf factorisation tells us that any irreducible MAP is a bonding process and that the corresponding friends can be chosen as the ascending/descending ladder height processes
- is this the only possible choice?

- the matrix Wiener–Hopf factorisation tells us that any irreducible MAP is a bonding process and that the corresponding friends can be chosen as the ascending/descending ladder height processes
- is this the only possible choice?
- put differently: given a friendship, are the friends (a version) of the ascending/descending ladder height processes of the bonding MAP?

- the matrix Wiener–Hopf factorisation tells us that any irreducible MAP is a bonding process and that the corresponding friends can be chosen as the ascending/descending ladder height processes
- is this the only possible choice?
- put differently: given a friendship, are the friends (a version) of the ascending/descending ladder height processes of the bonding MAP?
- \rightsquigarrow verify that Wiener–Hopf factorisation is unique in the sense that for MAP subordinator exponents Ψ^\pm and Φ^\pm such that

$$\Psi = -\Delta_{\pi}^{-1} \Psi^{-}(-\cdot)^{\top} \Delta_{\pi} \Psi^{+} = -\Delta_{\pi}^{-1} \Phi^{-}(-\cdot)^{\top} \Delta_{\pi} \Phi^{+},$$

it holds

$$\Phi^+=\Delta\Psi^+$$
, $\Phi^-=\Delta^{-1}\Psi^-$,

for some diagonal matrix Δ

Uniqueness of the Wiener–Hopf factorisation

- \mathcal{A}_0 is the class of matrix exponents of irreducible and finite mean MAP subordinators
- A_1 is the class of MAP subordinator exponents such that for any *i* one of the following is true
 - 1. $\lim_{\theta \to \pm \infty} |\psi_i(\theta)| = \infty$
 - 2. ψ_i is compound Poisson and for any j, $\Pi_{i,j} \ll \text{Leb}$

Theorem (Döring, T. and Watson, 2023+)

Let (H^{\pm}, J^{\pm}) be irreducible π -friends s.t. one of the following sets of conditions holds:

- 1. the bonding MAP is irreducible and killed,
 - the ladder height processes of the bonding MAP are irreducible, and π is invariant for the bonding MAP;
- 2. the bonding MAP is irreducible and unkilled,
 - $\Psi^{\pm} \in \mathcal{A}_0 \cap \mathcal{A}_1$, and the exponents of the ladder height processes of the bonding MAP belong to $\mathcal{A}_0 \cap \mathcal{A}_1$.

Then (H^{\pm}, J^{\pm}) are versions of the ladder height processes of their bonding MAP.

- we extend Vigon's theory of Lévy friendships to Markov additive processes
- we demonstrate that there is no direct correspondence of philanthropy in the MAP world
- we coin a different notion, fellowship, that allows us to generate the first explicit MAP WH-factorisations since Kyprianou's deep factorisation of the stable process
- we provide a probabilistic interpretation of friendships by studying uniqueness of the MAP WH-factorisation

- we extend Vigon's theory of Lévy friendships to Markov additive processes
- we demonstrate that there is no direct correspondence of philanthropy in the MAP world
- we coin a different notion, fellowship, that allows us to generate the first explicit MAP WH-factorisations since Kyprianou's deep factorisation of the stable process
- we provide a probabilistic interpretation of friendships by studying uniqueness of the MAP WH-factorisation

Thank you for your attention!