Markov additive friendships

43rd Conference on Stochastic Processes and their Applications – Lisbon 2023

Lukas Trottner joint work with Leif Döring and Alex Watson 24 July 2023

Aarhus University University of Mannheim University College London

Theory of friends for Lévy processes

- \bullet let ξ be a Lévy process with characteristic exponent ψ , i.e., $\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta\xi_t}]=\mathrm{e}^{t\psi(\theta)}$
- the ascending ladder height process H^+ is a subordinator tracking the new suprema of ξ
- \bullet the descending ladder height process H^+ plays the same role for the infima
- $\bullet\,$ for ψ^{\pm} denoting the characteristic exponents of H^{\pm} , it holds

 $\psi(\theta) = -\psi^{-}(-\theta)\psi^{+}(\theta)$

- \bullet let ξ be a Lévy process with characteristic exponent ψ , i.e., $\mathbb{E}[\mathrm{e}^{\mathrm{i}\theta\xi_t}]=\mathrm{e}^{t\psi(\theta)}$
- the ascending ladder height process H^+ is a subordinator tracking the new suprema of ξ
- \bullet the descending ladder height process H^+ plays the same role for the infima
- $\bullet\,$ for ψ^{\pm} denoting the characteristic exponents of H^{\pm} , it holds

 $\psi(\theta) = -\psi^{-}(-\theta)\psi^{+}(\theta)$

Problem

Given a LK exponent ψ the Wiener–Hopf factors can very rarely be explicitly determined.

- $\bullet\,$ start with two subordinators H^\pm having LK exponents ψ^\pm
- when is there a Lévy process ξ with LK exponent ψ such that $\psi = -\psi^{-}(-\cdot)\psi^{+}$?
- when such ξ exists, we call H^{\pm} friends and ξ the bonding process

The Theorem of friends

- \bullet d^{\pm} drift of H^{\pm}
- \bullet Π^{\pm} Lévy measure of H^{\pm}
- \bullet H^\pm are compatible if $d^\mp >0$ implies that Π^\pm has a càdlàg density $\partial \Pi^\pm$ that can be expressed as the tail of a signed measure

The Theorem of friends

- \bullet d^{\pm} drift of H^{\pm}
- \bullet Π^{\pm} Lévy measure of H^{\pm}
- \bullet H^\pm are compatible if $d^\mp >0$ implies that Π^\pm has a càdlàg density $\partial \Pi^\pm$ that can be expressed as the tail of a signed measure

Theorem (Vigon, 2002)

 H^{\pm} are friends if, and only if, they are compatible and the function

$$
\Upsilon(x) = \begin{cases} \int_{(0,\infty)} (\Pi^-(y,\infty) - \psi^-(0)) \Pi^+(x+dy) + d^-\partial \Pi^+(x), & x > 0, \\ \int_{(0,\infty)} (\Pi^+(y,\infty) - \psi^+(0)) \Pi^-(-x+dy) + d^+\partial \Pi^-(-x), & x < 0, \end{cases}
$$

is a.e. increasing on $(0, \infty)$ and a.e. decreasing on $(-\infty, 0)$.

Then, γ is a.e. the right/left tail of the Lévy measure of the bonding process.

- \bullet a subordinator H^+ is called philanthropist if its Lévy measure admits a decreasing density
- equivalently, philanthropists are subordinators that are friends with pure drift subordinators $H_t^- = d^- t$
- \rightarrow spectrally negative Lévy processes that do not drift to $-\infty$ can be factorised into a philanthropist and a pure drift
- \bullet a subordinator H^+ is called philanthropist if its Lévy measure admits a decreasing density
- equivalently, philanthropists are subordinators that are friends with pure drift subordinators $H_t^- = d^- t$
- \rightarrow spectrally negative Lévy processes that do not drift to $-\infty$ can be factorised into a philanthropist and a pure drift

Theorem (Vigon, 2002)

Any two philanthropists are friends.

[Markov additive friendships](#page-9-0)

• a nice Markov process (ξ, J) is a MAP on $\mathbb{R} \times \{1, \ldots, n\}$ if

$$
\mathbb{E}^{0,i}[f(\xi_{t+s}-\xi_t,J_{t+s}) | \mathcal{F}_t] \mathbf{1}_{\{t<\zeta\}} = \mathbb{E}^{0,J_t}[f(\xi_s,J_s)] \mathbf{1}_{\{t<\zeta\}}
$$

- equivalently, a MAP can be characterised as a regime-switching Lévy process
	- $\xi^{(i)}$ is a Lévy process for any phase $i \in [n]$
	- *J* is a Markov chain with transition matrix Q
	- when *J* is in state *i*, run an independent copy of $\xi^{(i)}$
	- phase switches from *i* to *j* trigger an additional jump with distribution $F_{i,j}$

Analytic characterisation of MAPs

- ψ_i LK exponent of $\xi^{(i)}$
- \bullet Π_i Lévy measure of $\xi^{(i)}$ and denote $\Pi_{i,j} \coloneqq q_{i,j}F_{i,j}$
- call $\Pi = (\Pi_{i,j})_{i,j \in [n]}$ Lévy measure matrix of ξ
- $\bullet\,$ we have $\mathbb{E}^{0,i}[\mathrm{e}^{\mathrm{i}\theta\bar{\xi}_t}{\bf 1}_{\{J_t=j\}}]=(\exp(t\Psi(\theta)))_{i,j}$ with characteristic matrix exponent

$$
\Psi(\theta) = \text{diag}((\psi_i(\theta))_{i \in [n]}) + \mathbf{Q} \odot (\widehat{F}_{i,j}(\theta))_{i,j \in [n]}
$$
\n
$$
= \begin{bmatrix}\n\psi_1(\theta) + q_{1,1} & \widehat{\Pi}_{1,2}(\theta) & \cdots & \widehat{\Pi}_{1,n}(\theta) \\
\widehat{\Pi}_{2,1}(\theta) & \psi_2(\theta) + q_{2,2} & \cdots & \widehat{\Pi}_{2,n}(\theta) \\
\vdots & \vdots & \ddots & \vdots \\
\widehat{\Pi}_{n,1}(\theta) & \widehat{\Pi}_{n,2}(\theta) & \cdots & \psi_n(\theta) + q_{n,n}\n\end{bmatrix}
$$

- $\bullet\,$ ascending/descending ladder height MAPs (H^\pm,J^\pm) : ordinator H^\pm tracks new suprema/infima of ξ and J^\pm tracks phases during which they occur
- they are MAP subordinators (increasing ordinators) with matrix exponents Ψ^{\pm}
- \bullet we always assume that J is irreducible and hence has an invariant distribution represented by a vector π

Theorem [DDK17, 117, DTW23+]

$$
\Psi(\theta) = -\Delta_{\pi}^{-1} \Psi^{-}(-\theta) \Delta_{\pi} \Psi^{+}(\theta),
$$

where Δ_{π} is the diagonal matrix containing π .

The inverse problem

- $\bullet\,$ we call a MAP subordinator (H^+,J^+) a π -friend of (H^-,J^-) if
	- 1. $\Psi \coloneqq -\Delta_{\pi}^{-1} \Psi^{-}(-\cdot) \Delta_{\pi} \Psi^{+}$ is a characteristic MAP exponent 2. $\boldsymbol{\pi}^\top \boldsymbol{\Psi}(0) \leqslant \boldsymbol{0}^\top$
- then, a MAP (ξ, J) with matrix exponent Ψ is called bonding MAP
- the second condition ensures that
	- \bullet π is a valid candidate for an invariant distribution of J
	- \bullet (H^+, J^+) is a π-friend of (H^-, J^-) iff (H^-, J^-) is a π-friend of (H^+, J^+) \rightsquigarrow symmetric relation and the bonding MAP between (H^-, J^-) and (H^+, J^+) is the dual MAP of (ξ, J)

The inverse problem

- $\bullet\,$ we call a MAP subordinator (H^+,J^+) a π -friend of (H^-,J^-) if
	- 1. $\Psi \coloneqq -\Delta_{\pi}^{-1} \Psi^{-}(-\cdot) \Delta_{\pi} \Psi^{+}$ is a characteristic MAP exponent 2. $\boldsymbol{\pi}^\top \boldsymbol{\Psi}(0) \leqslant \boldsymbol{0}^\top$
- then, a MAP (ξ, J) with matrix exponent Ψ is called bonding MAP
- the second condition ensures that
	- \bullet π is a valid candidate for an invariant distribution of J
	- \bullet (H^+, J^+) is a π-friend of (H^-, J^-) iff (H^-, J^-) is a π-friend of (H^+, J^+) \rightsquigarrow symmetric relation and the bonding MAP between (H^-, J^-) and (H^+, J^+) is the dual MAP of (ξ, J)

Questions

- 1. Are there necessary and sufficient conditions for π -friendship generalising Vigon's characterisation of Lévy friendships?
- 2. Is there a concept of MAP philanthropy?

π -compatibility

 (H^+,J^+) and (H^-,J^-) are called π -compatible if

- 1. if $d_i^{\pm} > 0$, then $\Pi_{i,j}^{\pm}$ restricted to $(0, \infty)$ has a càdlàg density $\partial \Pi_{i,j}^{\pm}$ and $\partial \Pi_{i,i}^{\pm}$ can be expressed as the tail of a signed measure
- 2. balance conditions on the characteristics that in particular require
	- $q_{i,j}^+ d_i^- F_{i,j}^+ (\{0\}) = \frac{\pi(j)}{\pi(i)} q_{j,i}^- d_i^+ F_{j,i}^- (\{0\})$
	- the function

$$
x \mapsto q_{i,j}^+\left(\int_0^\infty \mathbf{1}_{\{y>x\}} \overline{\Pi}_i^-(y-x) F_{i,j}^+(dy) + d_i^- f_{i,j}^+(x)\right) - \frac{\pi(j)}{\pi(i)} q_{j,i}^- \left(\int_0^\infty \mathbf{1}_{\{-x
$$

is a.e. equal to a right-continuous, bounded variation function converging to 0 at $\pm\infty$ 3. the vectors $-\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)$ 1 and $-\pi^{\top}\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)$ are nonnegative

π -compatibility

 (H^+,J^+) and (H^-,J^-) are called π -compatible if

- 1. if $d_i^{\pm} > 0$, then $\Pi_{i,j}^{\pm}$ restricted to $(0, \infty)$ has a càdlàg density $\partial \Pi_{i,j}^{\pm}$ and $\partial \Pi_{i,i}^{\pm}$ can be expressed as the tail of a signed measure
- 2. balance conditions on the characteristics that in particular require
	- $q_{i,j}^+ d_i^- F_{i,j}^+ (\{0\}) = \frac{\pi(j)}{\pi(i)} q_{j,i}^- d_i^+ F_{j,i}^- (\{0\})$
	- the function

$$
x \mapsto q_{i,j}^+\left(\int_0^\infty \mathbf{1}_{\{y>x\}} \overline{\Pi}_i^-(y-x) F_{i,j}^+(dy) + d_i^- f_{i,j}^+(x)\right) - \frac{\pi(j)}{\pi(i)} q_{j,i}^- \left(\int_0^\infty \mathbf{1}_{\{-x
$$

is a.e. equal to a right-continuous, bounded variation function converging to 0 at $\pm\infty$ 3. the vectors $-\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)$ 1 and $-\pi^{\top}\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)$ are nonnegative

 π -compatibility is necessary for π -friendship \rightsquigarrow There are no MAP philanthropists!

Theorem (Döring, T. and Watson, $2023+$)

 (H^+, J^+) and (H^-, J^-) are π -friends if, and only if, they are π -compatible and the matrix-valued function

$$
\Upsilon(x)=\begin{cases}\left(\int_{x+}^{\infty}\Delta_{\pi}^{-1}\Big(\overline{\Pi}^{-}(y-x)-\Psi^{-}(0)\Big)^{\top}\Delta_{\pi}\,\Pi^{+}(dy)+\Delta_{d}^{-}\partial\Pi^{+}(x)\right), &x>0,\\ \left(\int_{(-x)+}^{\infty}\Delta_{\pi}^{-1}\big(\Pi^{-}(dy)\big)^{\top}\Delta_{\pi}\left(\overline{\Pi}^{+}(y+x)-\Psi^{+}(0)\right)+\Delta_{\pi}^{-1}\big(\Delta_{d}^{+}\partial\Pi^{-}(-x)\big)^{\top}\Delta_{\pi}\right), &x<0,\end{cases}
$$

is a.e. equal to a function decreasing on $(0, \infty)$ and increasing on $(-\infty, 0)$.

Then, Υ is a.e. the right/left tail of the Lévy measure matrix of the bonding MAP.

We call (H^+,J^+) and (H^-,J^-) π -fellows if they have decreasing Lévy density matrices $\partial \Pi^+$ and $\partial \Pi^-$ on $(0, \infty)$, and the matrix functions

$$
-\Delta_{\pi}^{-1}\Psi^-(0)^{\top}\Delta_{\pi}\overline{\Pi}^+(x)+\Delta_{d}^{-}\partial\Pi^+(x), \quad x>0,
$$

and

$$
-\Delta_{\pi}^{-1}\Psi^{+}(0)^{\top}\Delta_{\pi}\overline{\Pi}^{-}(x)+\Delta_{d}^{+}\partial\Pi^{-}(x), \quad x>0,
$$

are decreasing.

Note: Any two Lévy fellows are Lévy philanthropists and therefore friends.

Lemma (Döring, T. and Watson, $2023+$)

A MAP subordinator (H^{+},J^{+}) with decreasing Lévy density matrix is a π -friend of a pure drift MAP (H^-, J^-) (that is, $H_t^- = \int_0^t d_{J_s^-}^-(ds)$ if, and only if, they are π -compatible π -fellows.

Lemma (Döring, T. and Watson, $2023+$)

A MAP subordinator (H^{+},J^{+}) with decreasing Lévy density matrix is a π -friend of a pure drift MAP (H^-, J^-) (that is, $H_t^- = \int_0^t d_{J_s^-}^-(ds)$ if, and only if, they are π -compatible π -fellows.

Recall: Any two Lévy philanthropists are friends.

Lemma (Döring, T. and Watson, $2023+$)

A MAP subordinator (H^{+},J^{+}) with decreasing Lévy density matrix is a π -friend of a pure drift MAP (H^-, J^-) (that is, $H_t^- = \int_0^t d_{J_s^-}^-(ds)$ if, and only if, they are π -compatible π -fellows.

Recall: Any two Lévy philanthropists are friends.

Theorem (Döring, T. and Watson, $2023+$)

Any two π -compatible π -fellows are π -friends.

- only known MAP WH-factorisation is from the deep factorisation of the stable process
- to generate explicit friendships it is crucial to find manageable criteria for π -compatibility
- we develop such criteria in two cases
	- 1. at least one of the putative friends is a pure drift
	- 2. both candidates have zero drift parts and no transitional atoms (i.e., $q_{i,j}^{\pm}F_{i,j}^{\pm}(\{0\})=0)$
- the first case allows us to give a general construction principle for spectrally one-sided MAPs and modulated Brownian motions starting from the WH-factors
- combining the compatibility criteria from both cases, we construct MAPs jumping in both directions (Markov modulated double exponential jump diffusions)

• the matrix Wiener–Hopf factorisation tells us that any irreducible MAP is a bonding process and that the corresponding friends can be chosen as the ascending/descending ladder height processes

- the matrix Wiener–Hopf factorisation tells us that any irreducible MAP is a bonding process and that the corresponding friends can be chosen as the ascending/descending ladder height processes
- is this the only possible choice?

- the matrix Wiener–Hopf factorisation tells us that any irreducible MAP is a bonding process and that the corresponding friends can be chosen as the ascending/descending ladder height processes
- is this the only possible choice?
- put differently: given a friendship, are the friends (a version) of the ascending/descending ladder height processes of the bonding MAP?

- the matrix Wiener–Hopf factorisation tells us that any irreducible MAP is a bonding process and that the corresponding friends can be chosen as the ascending/descending ladder height processes
- is this the only possible choice?
- put differently: given a friendship, are the friends (a version) of the ascending/descending ladder height processes of the bonding MAP?
- \rightarrow verify that Wiener–Hopf factorisation is unique in the sense that for MAP subordinator exponents Ψ^{\pm} and Φ^{\pm} such that

$$
\Psi = -\Delta_{\pi}^{-1} \Psi^{-}(-\cdot)^{\top} \Delta_{\pi} \Psi^{+} = -\Delta_{\pi}^{-1} \Phi^{-}(-\cdot)^{\top} \Delta_{\pi} \Phi^{+},
$$

it holds

$$
\Phi^+ = \Delta \Psi^+, \quad \Phi^- = \Delta^{-1} \Psi^-,
$$

for some diagonal matrix Δ

Uniqueness of the Wiener–Hopf factorisation

- \bullet \mathcal{A}_0 is the class of matrix exponents of irreducible and finite mean MAP subordinators
- A_1 is the class of MAP subordinator exponents such that for any *i* one of the following is true
	- 1. $\lim_{\theta \to \pm \infty} |\psi_i(\theta)| = \infty$
	- 2. $\,\,\psi_{i}$ is compound Poisson and for any $j,\,\Pi_{i,j}\ll$ Leb

Theorem (Döring, T. and Watson, $2023+$)

Let (H^{\pm},J^{\pm}) be irreducible π -friends s.t. one of the following sets of conditions holds:

- 1. the bonding MAP is irreducible and killed,
	- the ladder height processes of the bonding MAP are irreducible, and π is invariant for the bonding MAP;
- 2. the bonding MAP is irreducible and unkilled,
	- $\Psi^{\pm} \in A_0 \cap A_1$, and the exponents of the ladder height processes of the bonding MAP belong to $A_0 \cap A_1$.

Then (H^{\pm},J^{\pm}) are versions of the ladder height processes of their bonding MAP.

- we extend Vigon's theory of Lévy friendships to Markov additive processes
- we demonstrate that there is no direct correspondence of philanthropy in the MAP world
- we coin a different notion, fellowship, that allows us to generate the first explicit MAP WH-factorisations since Kyprianou's deep factorisation of the stable process
- we provide a probabilistic interpretation of friendships by studying uniqueness of the MAP WH-factorisation
- we extend Vigon's theory of Lévy friendships to Markov additive processes
- we demonstrate that there is no direct correspondence of philanthropy in the MAP world
- we coin a different notion, fellowship, that allows us to generate the first explicit MAP WH-factorisations since Kyprianou's deep factorisation of the stable process
- we provide a probabilistic interpretation of friendships by studying uniqueness of the MAP WH-factorisation

Thank you for your attention!