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Some known concentration results for Markov processes

Let X be a nice ergodic Markov processes with semigroup (P:):>o, invariant distribution t and
generator L on L?(p) (endowed with inner product (f, g),, = [ fgdu) and denote

Co(f, T\x) = IPV< %JT F(X,)dt — p(f)) > x), fel?(w),x, T>0.

0

Bounds have been mostly studied with two approaches (Lyapunov vs. Poincaré [Bak08]):

1. Functional inequalities: If (P;):>o is symmetric let € be the Dirichlet form associated to —L (then
D(€) = D(v/—L) and E(f, g) = —(Lf, g). for f € D(L), g € D(E))
e Poincaré inequality (PI):
Var, (g) == n(g®) — u(g)2 < —Cp(lg g, g€ DIL).
Implies: ||Pef — p(f) Iz, <e e 2t/Cr|f — ez
e log-Sobolev mequahty (LS) (Pt)e0 symmetrlc and
Ent,(g”) == 1(g’logg®) — 1(g®)log n(g?) <2Cis€(g.g), g€ D(E),

2. Mixing assumptions:

(x(v,@)):  ay(t) =sup sup IPY(ANn B) —PY(A)PY(B)| < o(t) — 0.

520 Aco(Xy,u<s),Beo(Xy,u>s+t) B=X9

For reasonable v implied by ergodicity of P, i.e., — v < CV(x)o(t)
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Some known concentration results for Markov processes

[Lez01]  Suppose v < W, dv/du € L?(u) and [|f||o < co. If u satisfies (PI) then we have the
Bernstein inequality (BI)

Tx? ) '

dv
V(F T, x) <2|— -
C( x) Hdu L2(p) eXp< 2(02(f) +2GCp || o)

where 0%(f) = lim,_,o t *Varpu (fé f(X,)ds)
[GGW14] If p satisfies (LS), p(f) = 0 and p(exp(A+f*)) < co for some A > 0 then we have the (Bl)

Tx? ) '

dv
et 70 <2 gl 20 (- e e eaTem

w. A* =A% VA* and A% Legendre transf. of [0,AL] 3 s +— AL (s) == log p(exp(s(£f))).
[CG08]  If (ax(p, @)) with @(t) = cexp(—tijg], g € 10,1) [g = 0: exponential mixing, g € (0,1):
subexponential mixing] and ||f||. < oo, then for any x > C(c, q)/V/T, it holds
7))
1110 '

C.(f, T,x) <2exp (fc(q)(
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Martingale approximation for diffusions

e Let X be a (weak) solution to the SDE
dX; = b(X,)dt + o(X;) dW,,

b € Lip (R4 RY), o € Lip(RY; RY*¢) and bounded, a:= 00" s.t. A I < a(x) <Al Vx

o Let L=b"V +} ;40,0 and suppose that for given f: RY — R the Poisson equation Lg = f
has some sufficiently regular solution L=1[f]

e By Ito's formula: L7[f](X,) — L7 (X)) = fé LL7Yf](X;) ds + IS(VL*I[H(XS))TU(XS) dW; and
hence

Jt f(Xs)ds = Jt(—VL’l[f](XS))TG(XS) dW, + L HFI(X,) — L HFI(Xo)
0 0

remainder
(loc.) martingale

~ If we have some control on L=*[f], VL1[f] we can use martingale approximation for derivation of
concentration bounds
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Statistics based on martingale approximation

[AWS21; GPO7] scalar case d = 1: explicit formula for VL *[f] available ~ careful bounds on
VL [Ky(x —-)b] given
e exponential ergodicity of (P;)>0
e at most linear drift
provide uniform concentration results that are tight enough for proving minimax
estimation rates for drift estimation
[NR20] multivariate case d > 1: 0 =1 and b periodic ~ for periodic f, VL™![f] is bounded.
This yields sub-Gaussian concentration for such f, which is used for minimax Bayesian
drift inference

Question
What kind of concentration rates can be achieved in a multivariate setting under relaxed stability

assumptions and for unbounded f7?
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Poisson equation under subexponential drift assumptions

Assume ||b(x)|| <1+ ||x||* and for some g € (—1,1), t, A >0,
(b(x), x/|Ix|) < —¢llx[|77, |||l > A. (Dq)
[PVO1; BRS18] If u(f) =0 and ||f(x)]| < “1fl(x) = —fgo P.f(x)dt we have
L71[fl e W2P(Rd) for any p > 1, L71[f] solves the Poisson equation and

loc

LA S T+ |||, VLA ()] S 1+ ||x|rFettte.

Let [|v|lr = supz<flv(g)l for some f > 1 and (¥;,¥,) be either pairs of inverse Young functions (i.e.,
xy <Y x)+ W, (y)) or (Id, 1) or (1,1d).

Proposition [DFG09; AWST22]
We have

-
|Pf(x) = il < C(g4)exp (Ulx~™) exp (= Ve ) and j exp (1x[[*7*) p(dx) < oo
R4
Moreover, for vy > 1+ q, ryq(t) ~ (1 + ) Y=/ 0%a) £ () ~ 1 4 ||x|y =+,

(W1(ry.q(£) V DIPe(x,-) = mllivwgor, o < C(¥I(L + [[x]]Y).
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Continuous-time concentration result

Theorem [AWST22]
Assume (D), [|b(x)]] S 1+ ||x]|* and [f(x)| < £(1 + ||x]|"). Let

1 1+
2t e

p(m, Kk, q) =
, m>0.

Then, there exists a constant ¢ > 0 s.t. for any x > 2/v/ T,

%LT f(Xe)dt — u(f)‘ > x} < eXp(_c<x£T)1/p(n,K'q]).

Culf, Tox) = [E“[

Poincaré, n =0 ‘ log-Sobolev, n < 2 ‘ subexponential, 1 > 0

log(1/5) log(1/5) (c2log(1/8))2P (n.x.9)
£ £ 52

Table 1: Order of sufficient sample length W(¢, d) s.t. (¢, 5)-PAC-bound P*(|ur(f) —u(f)|<e)>1—06
holds for T > W(¢, d)
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Discrete-time concentration result

Let observations (Xxa)k—1
Hn,A(f) =

ﬁGnA(ﬂ, where

Gralf) = —— 3 F(Xkn)A.
VnA 5

Theorem [AWST22]

Assume (D,), ||b(x)|| S 1+ [|x||¥, f € C?(R%R) s.t. [|[DF(x)|| <1+ ||x||"*, k =0,1,2. Define

o= (k+m)Vny, andlety >1+q,r>1,st.y—(1+q) >r(«V (1+q)/(r—1)). Then, for some
constant ® independent of n, p, A, for any p > 2 we have

max{ (Y +2x+1—qy)/2n1+1—q} l+n+!<+1+q
2 I

Gn.a(F = w(FNlren) < D(VAAY? + Ap e ) = o(n,4,p),

and
uw(uH]n,A(f) — u(f) > e(nA) V20 (n, A, x)) <e ™, x>2.
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Applications




Lasso for parametrized drifts

For a given dictionary {{q, ..., Py} of Lipschitz functions \;: RY — RY, let X be the strong solution to

N
dX, = bgo(X,)dt + o(X,)dW,, where bgo(x) =) 0%;(x).
i=1

Let W (x) = (P1(x), ..., bn(x)), ¥(x) = (0 (x)(x)) To (x)h(x) and W7 = T~ [ W(X,)dt.
Then for by =10, negative log-likelihood given by

]
£7(8) = Lr(bo) = 0TF0 —29TH B(X)Ta 1 (X) dX..
0

Goal
Study convergence guarantees of Lasso estimator

87 :=argmin {£7(6) + 6]},
0€RN

under sparsity assumptions on 0y, i.e., ||6o]lo < So-
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Assumptions and examples

We assume

1. 3Ac>0,ge[-1,1): (bgo(x) x/Ix|) < —tllx]|79 |Ix|]| > A;
2. Amax(W(x)) S 1+ [|x]>™;

3. W; is positive definite Pgo-a.s.

Example 1:

[GM19;
CMP20]

Example 2:

OU process: N = d?, 1;(x) = E;x, where E; is the matrix with i-th entry (counted
row-wise, say) equal to 1 and all other entries equal to 0, 0° s.t. for bgo(-) = Ago-, Ago
is symmetric, negative definite ~~ g =—1,11 = 1.

N =2d? V; = E;xx for i < d? and ¥; = E;_px(a+ ||x]|) =39, for d? + 1 < i < 2d?
and some g € (—1,1),x > 0. Let 0° s.t. for
bgo (x) = Agox + Bgox(a + ||x||) =+,

Ago is singular and negative semi-definite and Bgo is symmetric negative definite ~~
g=gn=1
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Oracle inequality

Theorem [GM19; CMP20; AWST22]

Suppose [|0°]]o < so and let HBHL2 := 0 W10. Suppose that for all €9 € (0,1) and VT > To(eo, s, co, )
the restricted eigenvalue property

||6—6 H mm“E[WT])
P inf > >1— ¢,
(eesl( )9’652(5509 o —o2 = 2 - co
hoIds where 85(s, 0, 0) = {0/ €RN : [|0 — 0|1 < (1 + c0)][(6 — 0")ly(0—0) 1}
81(s) = {G €RN:||8]lo = s}, and for some p(g,n) >0,
2 plam) 182 (gp + 2)2e?c?
To(eo,s, co, ) == {Iog (2125 (d/\ (%) s)) — log eo} mmo—)2.

Fix v > 0 and g9 € (0,1). Then, for

29 5 + Amin (E[¥7]) 6N
7\22\/( had 1)) |og<ao> and T}To(%o,so,l+%,c>,

with probability at least 1 — g, we have

4(2+v)? 2}
— OlloA .
Y+ y) A (E0F7]) 100 s

= 2 q 2
0r—96 <@ f 0—06
[8r =0l < 1+ v) ot {llo—eolfa +



Restricted eigenvalue property

Proposition [AWST22]

6n+2g+3—q

The restricted eigenvalue property holds for p(g,n) = ey

, i.e., for any ¢ € (0,1) and

6n+29+3—q 5 2 5 o
o5 ed\25\) T 182 (¢ +2)" e°c
T > {Iog (21 (d/\ (Z) )) log eo} —}\min([E[WT]V .

we have

_ (0—0)TW(0—0) _ Amin(EW7])
P > 21— &,
(eesl(s),'g/eszu,e) 6 — o : K
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MCMC for moderately heavy tailed targets

e Langevin diffusion
dX, = —VU(X,) dt + V2dW,,

has invariant density 7t(x) oc exp(—U(x)) ~» sampling from 7 by numerical approximation of X,

e.g., Euler scheme

1= —AVUOP) + V2AEa, 96 ~ X0, (&) ~ N(0,1)

8

n+

e abundant literature on sampling preicision in TV or Wasserstein distance for U strongly convex or
modifications thereof [Dall7; DK19; DM17; DMM19] ~~ 7(x) dx sub-Gaussian

e Assume instead that for some g € (0, 1)
(VUX), x/[l) = llx]|79, [Ix]] > A.

~ N> 0: [gaexp (Ax[|)m(x)dx <00 <= g<1—gq
~ prototypical example: 7t(x) ox exp(—p||x||*~9) outside some ball around the origin
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