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A singular control problem for scalar ergodic diffusions



Framework (1D)

regular 1-dim. It6 diffusion
dX(t) = b(X;) dt + o(X;) dW,,

with assumptions that guarantee an invariant density

_ 1 * bly)
plx) = Co2(x) P (2L 02(y)dy)'

and ergodicity in the sense P(X; € dx) tT*V> p(x)dx.
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Framework (1D)

e Singular control: Z = (U, D;)s=0, U, D non-decreasing, right-continuous and adapted,
dXZ = b(XZ)dt + o(XZ?)dW, + dU, — dD,.

For reflection controls (U%, D®) we have XZ € [£, 0] for all t
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Framework (1D)

e Singular control: Z = (U, D;)s=0, U, D non-decreasing, right-continuous and adapted,
dXZ = b(XZ)dt + o(XZ?)dW, + dU, — dD,.

For reflection controls (U%, D®) we have XZ € [£, 0] for all t

e ¢ continuous, nonnegative running cost function, q,, g4 > 0.
Minimize

1 T
lim sup 7[E” c(XZ)ds + g,Ur + qgDr],

T—o0 0
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Solution for singular control problem

For each (&, 0), the corresponding reflection strategy has value

1 ¢ q,0%(£) qq402(0) )
C&0)=F5—— x)p(x) dx 0) .
0= (] cttptxran+ 2o 1 927 El oo
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Solution for singular control problem

For each (&, 0), the corresponding reflection strategy has value

1 ’ q.0°(&) q49°(6) )
C(,0)= —— x)p(x) dx 0) .
0= (] cttptxran+ 2o 1 927 El oo

Theorem (Alvarez (2018))
Under some assumptions, the optimal value for the singular problem is given by

*
Csing

~ [ EGe)

and the reflection strategy for the minimizer (&%, 0*) is optimal.
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Data-driven approach to singular control



Central Assumption in Stochastic Control

The dynamics of the underlying process is known.

What to do if this is not the case?

e Which are the relevant characteristics of X to estimate approximately optimal boundaries?

e How does controlling the process influence the estimation?
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Crucial characteristics: b (assume o to be known).
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Crucial characteristics: b (assume o to be known).

Singular problem: Cj.. = min( e)e(-5,-1/8x11/8.68) C(&,0).

1 (<] b 2 0 2 a
o= (] ctrptmran+ 25 Do)+ 27 Eprey)
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Crucial characteristics: b (assume o to be known).
Singular problem: Cj.. = min( e)e(-5,-1/8x11/8.68) C(&,0).
1 0 q9,0°(8) qq0°(&)
cle8) = g (| ctaptarax+ 5 pie) + 71 g(e))
Je p(x)dx \Je
Plug-in estimator: If p7 is an estimator of p and we know p > p>0on [—-B, B], then for
P =p1Vp/2set

C (e, 0) = ® )5 u0%(E) -, 940%(0) -,
e = o (] ctomrtaex+ 25850+ 25055 )).
@T € arg min 67—(5,,9)

(§,0)e[—B,~1/B]x[1/B,B]

5/15



Crucial characteristics: b (assume o to be known).
Singular problem: Cj.. = min( e)e(-5,-1/8x11/8.68) C(&,0).
1 0 q9,0°(8) qq0°(&)
cle8) = g (| ctaptarax+ 5 pie) + 71 g(e))
Je p(x)dx \Je
Plug-in estimator: If p7 is an estimator of p and we know p > p>0on [—-B, B], then for
P =p1Vp/2set

) L ([ oy n0e s 250805 6 205 )
Cr(£,0) = 57— — x)p5(x)dx + ——=p% ————0%(9) ],
e 0) = ot (] ctomrt ax+ 2550 e) + 22005 o

(£,0); € arg min Cr(&,0)
(£,0)€[-B,—1/B]x[1/B,B]

If we have a deterministic bound ||p1||e < ¢(T),

o )—c | < -C
E, [C((Z,0);) gq\mﬁwm$@%mmJaam Cr(z,0)|]

S Es [I57 = Pllumi-gien] + (TP (87 = P59 > 0/2)

~» need non-asymptotic sup-norm concentration rates for appropriate nonparametric estimator pr 5/15



Concentration of kernel density estimator

Let

be a kernel estimator for p.

Proposition (Christensen, Strauch, T. (2023+))
Suppose that

1. b, o are Lipschitz and 0 < 0 < 0(x) < 0 < oo for all x;
2. for some y, A > 0, sgn(x)b(x) < —v if |[x| > A;

3. pp € CHR) with Holder continuous derivative.

Then, given a compactly supported and symmetric probability density K and the bandwidth choice
ht ~ (log T)2/v/T we have

_ 1/p log T
E ”pT_pHPOO(D)] EO( %— )

for any p > 1 and any open, bounded domain D.
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Regret given a separate observation process

Recall from before:
E} [C((E.8)7) — Cing

~ VT .
sing S [E?, [HPT - pHLOO([—B,B]):| + ( Pg <HPT — pHLOO[[—B,B]) > 8/2) :

log T)2

Corollary (Christensen, Strauch, T. (2023+))

Given the previous assumptions on X, it holds

E9 [C(@T) - c:ing] e o(,/@).
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Exploration vs. exploitation

Naive idea:

e estimate the optimal boundary based on the controlled process

e use the strategy based on the estimated boundary
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Exploration vs. exploitation

Naive idea:

e estimate the optimal boundary based on the controlled process

e use the strategy based on the estimated boundary

Problem

Exploration vs. Exploitation!
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Regret given explorations vs. exploitation tradeoff

eo 1T 37117 A _ y - - _. ..........
0 4 Ym0 AL
29— L |

A % T %
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Exploration vs. exploitation

Theorem (Christensen, Strauch, T. (2023+))

If we consider a data-driven reflection strategy Z s.t. the time S7 spent in exploration periods until
time T is of order St ~ T2/, then the expected regret per time unit,

1 oi (7 o3 > >
B[] cO)ds+ .U + auDF] - ¢

- sing’
T "Ll

is of order O(y/log T T-1/3).
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Extension to higher dimension




The multivariate case

e Let now d > 2 and consider an ergodic d-simensional Langevin diffusion
dX; = —VV(X,)dt +V2dW,,

with C? potential V: R? — R and invariant density p < exp(—V/(-));

e normally reflected process in domain D of class C?
dXP = —VV(XP) + V2dW; + n(XP)dLP,

where n is the inward unit normal vector of D and LP is local time of X on 0D

e control problem: minimize

. 1 ’ D D
C(D) = limsup 7[E” c(XP)dt + KLT]

T—o0 0
over appropriate class of domains D

e numerically, this is, e.g., tractable for star shaped sets, i.e., domains D given by
D={r(q)g: qe S '}, r:S5%" - (0,00) smooth.
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Reflected diffusions on star shaped sets

05 03 0o 03 o' 6 03 oo 03 06
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A formula for the ergodic costs

Theorem (Christensen, Holk, T. (2023+))

If D is a non-empty, bounded domain of class C?, then

C(D) = C(D,p) = ——

= o) ax (JD c(x)p(x) dx + KLD oly) j.(d—l(dy)>,

where F(9~1 is the (d — 1)-dimensional Hausdorff measure.
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Learning the optimal reflection boundary

Multivariate kernel density estimator:

_ 1 (7 d
Ph,T(X) &= m L K((x —X¢)/h)dt, K(x):= E K(xi),x/h = (xi/hi)i=1,. 4.

Results from Strauch (2018) show that if X satisfies both a Poincaré inequality and a Nash inequality,

then under anisotropic (3-Holder smoothness assumptions on p and gsufficient order of K, there exists
an adaptive bandwith choice h+ such that

log T _ d
1/p Nl d=2, —_ /1 1
[E{AA — "} SWyp(T) = 5 here :<f§ —
”phr,T PllE] S Wap(T) (logTT)zﬁJr%’ d>3, where d &= [5,)

Proposition (Christensen, Holk, T. (2023+))

Let p% = (p7 /A2p) \V p/2, where for some A,A >0, p € [p,p] on B(0,A)\ B(0,A). Let © be a family
of domains s.t. B(0,A) € D C B(0,A) and ¢ 1(dD) < A for any D € ©. Then for

Dt € argminpce C(D, px ), it holds

hr T

E[C(Dr. p) — min C(D, p)] < Wap(T)-
14/15



e we study singular control problems for ergodic diffusion processes in presence of uncertainty on
the drift

e our data-driven solutions are based on nonparametric adaptive estimation of the invariant density

e in the one-dimensional case, the exploration-exploitation tradeoff is overcome by separating the
timeline into exploration and exploitation phases of random length

e we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of
the invariant density estimator
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e we study singular control problems for ergodic diffusion processes in presence of uncertainty on
the drift

e our data-driven solutions are based on nonparametric adaptive estimation of the invariant density

e in the one-dimensional case, the exploration-exploitation tradeoff is overcome by separating the
timeline into exploration and exploitation phases of random length

e we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of
the invariant density estimator

Thank you for your attention!
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