## Learning to reflect - Data-driven solutions to singular control problems

21st INFORMS APS Conference

#### Lukas Trottner

based on joint work with Sören Christensen, Asbjørn Holk and Claudia Strauch 30 June 2023

Aarhus University Kiel University

## Outline

- 1. A singular control problem for scalar ergodic diffusions
- 2. Data-driven approach to singular control
- 3. Extension to higher dimension



A singular control problem for scalar ergodic diffusions

# Framework (1D)

regular 1-dim. Itô diffusion

$$\mathrm{d}X(t) = b(X_t)\,\mathrm{d}t + \sigma(X_t)\,\mathrm{d}W_t$$
,

with assumptions that guarantee an invariant density

$$\rho(x) \ \coloneqq \ \frac{1}{C\sigma^2(x)} \exp\left(2\int_0^x \frac{b(y)}{\sigma^2(y)} dy\right),$$

and ergodicity in the sense  $\mathbb{P}(X_t \in dx) \xrightarrow[t \to \infty]{\text{TV}} \rho(x) dx$ .

## Framework (1D)

• Singular control:  $Z = (U_t, D_t)_{t \geqslant 0}$ , U, D non-decreasing, right-continuous and adapted,

$$\mathrm{d} X_t^Z = b(X_t^Z)\,\mathrm{d} t + \sigma(X_t^Z)\,\mathrm{d} W_t + \mathrm{d} U_t - \mathrm{d} D_t.$$

For reflection controls  $(U^{\xi}, D^{\theta})$  we have  $X^{Z}_{t} \in [\xi, \theta]$  for all t

## Framework (1D)

• Singular control:  $Z = (U_t, D_t)_{t \geqslant 0}$ , U, D non-decreasing, right-continuous and adapted,

$$\mathrm{d} X_t^Z = b(X_t^Z)\,\mathrm{d} t + \sigma(X_t^Z)\,\mathrm{d} W_t + \mathrm{d} U_t - \mathrm{d} D_t.$$

For reflection controls  $(U^{\xi}, D^{\theta})$  we have  $X_t^Z \in [\xi, \theta]$  for all t

• c continuous, nonnegative running cost function,  $q_u, q_d > 0$ . Minimize

$$\limsup_{T\to\infty}\frac{1}{T}\mathbb{E}\Big[\int_0^T c(X_s^Z)\,\mathrm{d}s+q_uU_T+q_dD_T\Big],$$

# Solution for singular control problem

For each  $(\xi, \theta)$ , the corresponding reflection strategy has value

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \rho(x) \, \mathrm{d}x} \left( \int_{\xi}^{\theta} c(x) \rho(x) \, \mathrm{d}x + \frac{q_u \sigma^2(\xi)}{2} \rho(\xi) + \frac{q_d \sigma^2(\theta)}{2} \rho(\theta) \right).$$

# Solution for singular control problem

For each  $(\xi, \theta)$ , the corresponding reflection strategy has value

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \rho(x) \, \mathrm{d}x} \left( \int_{\xi}^{\theta} c(x) \rho(x) \, \mathrm{d}x + \frac{q_u \sigma^2(\xi)}{2} \rho(\xi) + \frac{q_d \sigma^2(\theta)}{2} \rho(\theta) \right).$$

## Theorem (Alvarez (2018))

Under some assumptions, the optimal value for the singular problem is given by

$$C_{\text{sing}}^* = \min_{(\xi,\theta)} C(\xi,\theta).$$

and the reflection strategy for the minimizer  $(\xi^*, \theta^*)$  is optimal.



#### Questions

#### **Central Assumption in Stochastic Control**

The dynamics of the underlying process is known.

What to do if this is not the case?

- Which are the relevant *characteristics* of *X* to *estimate* approximately optimal boundaries?
- How does controlling the process *influence* the estimation?

# **Estimator**

Crucial characteristics:  $\emph{b}$  (assume  $\sigma$  to be known).

#### **Estimator**

Crucial characteristics: b (assume  $\sigma$  to be known).

Singular problem:  $C_{\text{sing}}^* = \min_{(\xi,\theta) \in [-B,-1/B] \times [1/B,B]} C(\xi,\theta)$ .

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \rho(x) \, \mathrm{d}x} \left( \int_{\xi}^{\theta} c(x) \rho(x) \, \mathrm{d}x + \frac{q_u \sigma^2(\theta)}{2} \rho(c) + \frac{q_d \sigma^2(\xi)}{2} \rho(\theta) \right)$$

Crucial characteristics: b (assume  $\sigma$  to be known).

Singular problem:  $C^*_{\text{sing}} = \min_{(\xi,\theta) \in [-B,-1/B] \times [1/B,B]} C(\xi,\theta)$ .

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \rho(x) dx} \left( \int_{\xi}^{\theta} c(x) \rho(x) dx + \frac{q_u \sigma^2(\theta)}{2} \rho(c) + \frac{q_d \sigma^2(\xi)}{2} \rho(\theta) \right)$$

Plug-in estimator: If  $\widehat{\rho}_T$  is an estimator of  $\rho$  and we know  $\rho \geqslant \underline{\rho} > 0$  on [-B, B], then for  $\widehat{\rho}_T^* := \widehat{\rho}_T \vee \rho/2$  set

$$\begin{split} \widehat{C}_{\mathcal{T}}(\xi,\theta) &\coloneqq \frac{1}{\int_{\xi}^{\theta} \widehat{\rho}_{\mathcal{T}}^{*}(x) \, \mathrm{d}x} \left( \int_{\xi}^{\theta} c(x) \widehat{\rho}_{\mathcal{T}}^{*}(x) \, \mathrm{d}x + \frac{q_{u} \sigma^{2}(\xi)}{2} \widehat{\rho}_{\mathcal{T}}^{*}(\xi) + \frac{q_{d} \sigma^{2}(\theta)}{2} \widehat{\rho}_{\mathcal{T}}^{*}(\theta) \right), \\ \widehat{(\xi,\theta)}_{\mathcal{T}} &\in \underset{(\xi,\theta) \in [-B,-1/B] \times [1/B,B]}{\operatorname{arg\,min}} \widehat{C}_{\mathcal{T}}(\xi,\theta) \end{split}$$

#### **Estimator**

Crucial characteristics: b (assume  $\sigma$  to be known).

Singular problem:  $C_{\text{sing}}^* = \min_{(\xi,\theta) \in [-B,-1/B] \times [1/B,B]} C(\xi,\theta)$ .

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \rho(x) dx} \left( \int_{\xi}^{\theta} c(x) \rho(x) dx + \frac{q_u \sigma^2(\theta)}{2} \rho(c) + \frac{q_d \sigma^2(\xi)}{2} \rho(\theta) \right)$$

Plug-in estimator: If  $\widehat{\rho}_T$  is an estimator of  $\rho$  and we know  $\rho \geqslant \underline{\rho} > 0$  on [-B, B], then for  $\widehat{\rho}_T^* := \widehat{\rho}_T \vee \rho/2$  set

$$\begin{split} \widehat{C}_{\mathcal{T}}(\xi,\theta) &\coloneqq \frac{1}{\int_{\xi}^{\theta} \widehat{\rho}_{\mathcal{T}}^{*}(x) \, \mathrm{d}x} \left( \int_{\xi}^{\theta} c(x) \widehat{\rho}_{\mathcal{T}}^{*}(x) \, \mathrm{d}x + \frac{q_{u} \sigma^{2}(\xi)}{2} \widehat{\rho}_{\mathcal{T}}^{*}(\xi) + \frac{q_{d} \sigma^{2}(\theta)}{2} \widehat{\rho}_{\mathcal{T}}^{*}(\theta) \right), \\ \widehat{(\xi,\theta)}_{\mathcal{T}} &\in \underset{(\xi,\theta) \in [-B,-1/B] \times [1/B,B]}{\arg \min} \widehat{C}_{\mathcal{T}}(\xi,\theta) \end{split}$$

If we have a deterministic bound  $\|\widehat{\rho}_T\|_{\infty} \leq c(T)$ ,

$$\begin{split} \mathbb{E}_b \left[ C(\widehat{(\xi,\theta)}_T) - C_{\mathrm{sing}}^* \right] &\leqslant 2 \mathbb{E}_b \big[ \max_{(\xi,\theta) \in [-B,-1/B] \times [1/B,B]} \Big| C(\xi,\theta) - \widehat{C}_T(\xi,\theta) \Big| \big] \\ &\lesssim \mathbb{E}_b \left[ \| \widehat{\rho}_T - \rho \|_{L^{\infty}([-B,B])} \right] + c(T) \mathbb{P}_b \left( \| \widehat{\rho}_T - \rho \|_{L^{\infty}([-B,B])} \geqslant \underline{\rho}/2 \right). \end{split}$$

ightharpoonup need non-asymptotic sup-norm concentration rates for appropriate nonparametric estimator  $\widehat{\rho}_{\mathcal{T}}$ 

# Concentration of kernel density estimator

Let

$$\widehat{\rho}_{T}(x) := \frac{1}{Th_{T}} \int_{0}^{T} K\left(\frac{x - X_{t}}{h_{T}}\right) dt$$

be a kernel estimator for  $\rho$ .

## Proposition (Christensen, Strauch, T. (2023+))

Suppose that

- 1. b,  $\sigma$  are Lipschitz and  $0 < \underline{\sigma} \leqslant \sigma(x) \leqslant \overline{\sigma} < \infty$  for all x;
- 2. for some  $\gamma$ , A > 0,  $sgn(x)b(x) \leq -\gamma$  if |x| > A;
- 3.  $\rho_b \in C^1(\mathbb{R})$  with Hölder continuous derivative.

Then, given a compactly supported and symmetric probability density K and the bandwidth choice  $h_T \sim (\log T)^2/\sqrt{T}$  we have

$$\mathbb{E}_b^0 \left[ \| \widehat{\rho}_T - \rho \|_{L^{\infty}(D)}^{\rho} \right]^{1/\rho} \in \mathcal{O}\left(\sqrt{\frac{\log T}{T}}\right),\,$$

for any  $p \geqslant 1$  and any open, bounded domain D.

## Regret given a separate observation process

Recall from before:

$$\mathbb{E}_b^0 \left[ \widehat{C((\xi,\theta)_T)} - C_{\mathrm{sing}}^* \right] \lesssim \mathbb{E}_b^0 \left[ \| \widehat{\rho}_T - \rho \|_{L^\infty([-B,B])} \right] + \frac{\sqrt{T}}{(\log T)^2} \mathbb{P}_b^0 \left( \| \widehat{\rho}_T - \rho \|_{L^\infty([-B,B])} \geqslant \underline{\rho}/2 \right).$$

Corollary (Christensen, Strauch, T. (2023+))

Given the previous assumptions on X, it holds

$$\mathbb{E}_b^0\left[\widehat{C((\xi,\theta)_T)} - C_{\operatorname{sing}}^*\right] \in \mathcal{O}\left(\sqrt{\frac{\log T}{T}}\right).$$

## Exploration vs. exploitation

#### Naïve idea:

- estimate the optimal boundary based on the controlled process
- use the strategy based on the estimated boundary

## Exploration vs. exploitation

#### Naïve idea:

- estimate the optimal boundary based on the controlled process
- use the strategy based on the estimated boundary

#### **Problem**

Exploration vs. Exploitation!

# Regret given explorations vs. exploitation tradeoff



## **Exploration vs. exploitation**

#### **Theorem** (Christensen, Strauch, T. (2023+))

If we consider a data-driven reflection strategy  $\widehat{Z}$  s.t. the time  $S_T$  spent in exploration periods until time T is of order  $S_T \approx T^{2/3}$ , then the expected regret per time unit,

$$\frac{1}{T}\mathbb{E}_b^0\Big[\int_0^T c(X_s^{\widehat{Z}})\,\mathrm{d}s + q_u U_T^{\widehat{Z}} + q_d D_T^{\widehat{Z}}\Big] - C_{\mathrm{sing}}^*,$$

is of order  $O(\sqrt{\log T} T^{-1/3})$ .



#### The multivariate case

• Let now  $d \ge 2$  and consider an ergodic d-simensional Langevin diffusion

$$\mathrm{d}X_t = -\nabla V(X_t)\,\mathrm{d}t + \sqrt{2}\,\mathrm{d}W_t,$$

with  $C^2$  potential  $V \colon \mathbb{R}^d \to \mathbb{R}$  and invariant density  $\rho \asymp \exp(-V(\cdot))$ ;

• normally reflected process in domain D of class  $C^2$ 

$$\mathrm{d} X_t^D = -\nabla V(X_t^D) + \sqrt{2}\,\mathrm{d} W_t + n(X_t^D)\,\mathrm{d} L_t^D,$$

where n is the inward unit normal vector of D and  $L^D$  is local time of X on  $\partial D$ 

• control problem: minimize

$$C(D)\coloneqq\limsup_{T o\infty}rac{1}{T}\mathbb{E}\Big[\int_0^T c(X_t^D)\,\mathrm{d}t+\kappa L_T^D\Big]$$

over appropriate class of domains D

• numerically, this is, e.g., tractable for star shaped sets, i.e., domains D given by

$$D=\left\{r(q)q:q\in S^{d-1}
ight\},\quad r\colon S^{d-1} o (0,\infty) ext{ smooth}.$$

# Reflected diffusions on star shaped sets



## A formula for the ergodic costs

#### Theorem (Christensen, Holk, T. (2023+))

If D is a non-empty, bounded domain of class  $C^2$ , then

$$C(D) = C(D, \rho) = \frac{1}{\int_D \rho(x) \, \mathrm{d}x} \Big( \int_D c(x) \rho(x) \, \mathrm{d}x + \kappa \int_{\partial D} \rho(y) \, \mathcal{H}^{d-1}(\mathrm{d}y) \Big),$$

where  $\mathcal{H}^{d-1}$  is the (d-1)-dimensional Hausdorff measure.

# Learning the optimal reflection boundary

Multivariate kernel density estimator:

$$\widehat{\rho}_{\boldsymbol{h},T}(x) \coloneqq \frac{1}{\prod_{i=1}^d h_i} \int_0^T \mathbb{K}((x-X_t)/\boldsymbol{h}) \, \mathrm{d}t, \quad \mathbb{K}(x) \coloneqq \prod_{i=1}^d K(x_i), x/\boldsymbol{h} \coloneqq (x_i/h_i)_{i=1,\dots,d}.$$

Results from Strauch (2018) show that if X satisfies both a Poincaré inequality and a Nash inequality, then under anisotropic  $\beta$ -Hölder smoothness assumptions on  $\rho$  and gsufficient order of K, there exists an adaptive bandwith choice  $\hat{h}_T$  such that

$$\mathbb{E}\Big[ \big\| \widehat{\rho}_{\widehat{h}_{\mathcal{T}},\mathcal{T}} - \rho \big\|_{\infty}^{p} \Big]^{1/p} \lesssim \Psi_{d,\beta}(\mathcal{T}) \coloneqq \begin{cases} \frac{\log \mathcal{T}}{\sqrt{\mathcal{T}}}, & d = 2, \\ \left(\frac{\log \mathcal{T}}{\mathcal{T}}\right)^{\frac{\overline{\beta}}{2\overline{\beta} + d - 2}}, & d \geqslant 3, \end{cases} \quad \text{where } \overline{\beta} = \Big( \frac{1}{d} \sum_{i=1}^{d} \frac{1}{\beta_{i}} \Big)^{-1}.$$

## Proposition (Christensen, Holk, T. (2023+))

Let  $\widehat{\rho}_{\mathcal{T}}^* \coloneqq (\widehat{\rho}_{\mathcal{T}} \wedge 2\overline{\rho}) \vee \underline{\rho}/2$ , where for some  $\underline{\lambda}, \overline{\lambda} > 0$ ,  $\rho \in [\underline{\rho}, \overline{\rho}]$  on  $B(0, \overline{\lambda}) \setminus B(0, \underline{\lambda})$ . Let  $\Theta$  be a family of domains s.t.  $B(0, \underline{\lambda}) \subset D \subset B(0, \overline{\lambda})$  and  $\mathcal{H}^{d-1}(\partial D) \leqslant \Lambda$  for any  $D \in \Theta$ . Then for  $\widehat{D}_{\mathcal{T}} \in \arg\min_{D \in \Theta} C(D, \widehat{\rho}_{\widehat{h}_{\mathcal{T}, \mathcal{T}}}^*)$ , it holds

$$\mathbb{E}\big[C(\widehat{D}_T, \rho) - \min_{D \in \Theta} C(D, \rho)\big] \lesssim \Psi_{d, \beta}(T).$$

## **Summary**

- we study singular control problems for ergodic diffusion processes in presence of uncertainty on the drift
- our data-driven solutions are based on nonparametric adaptive estimation of the invariant density
- in the one-dimensional case, the exploration-exploitation tradeoff is overcome by separating the timeline into exploration and exploitation phases of random length
- we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of the invariant density estimator

## **Summary**

- we study singular control problems for ergodic diffusion processes in presence of uncertainty on the drift
- · our data-driven solutions are based on nonparametric adaptive estimation of the invariant density
- in the one-dimensional case, the exploration-exploitation tradeoff is overcome by separating the timeline into exploration and exploitation phases of random length
- we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of the invariant density estimator

Thank you for your attention!