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Motivation:

“Creating noise from data is easy; creating data from noise is generative modeling.”

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.



Generative modelling

 involves learning the underlying distribution of a dataset to generate new, similar data
points

 aims to model the data distribution p(x) for observed data x , allowing the generation of new
samples x ′ that resemble the original data

 essential in applications like image synthesis, text generation, and data augmentation

Core tasks:

1. Density estimation: Learning the probability distribution p(x) or its properties.

2. Sampling: Drawing new samples x ′ from the learned p(x).

Examples: Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) and
normalizing flows
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Denoising diffusion models (DDMs)

• provide an iterative generative algorithm to create new samples that approximately match the
target distribution p0, given a finite number of samples corresponding to an unknown p0

• general idea: find a stochastic process that perturbs p0 to a new distribution pT such that

1) pT or a good approximation thereof is easy to sample from, and
2) the perturbation is reversible in the sense that we know how to simulate the

time-reversed process

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.
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Statistical challenges in generative modelling

Unifying principle of generative modelling:
transform noise to create new data that matches a given training data set
 transformations must adapt to the information contained in the training data, which is

high-dimensional in typical machine learning applications

Generative models have demonstrated remarkable empirical success across diverse domains,
including images, videos, and text, despite their differences in methodology:

• models like Generative Adversarial Networks (GANs) aim to directly approximate the
transformation from noise to data using adversarial training

• Denoising Diffusion Models (DDMs) dynamically evolve noise into data by approximating
the characteristics of a stochastic process

Under what conditions do these models ensure that the generated distribution converges to the
target distribution at a (minimax) optimal rate?
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Classical Denoising Diffusion Models (DDMs)

• for some fixed time T > 0 and suitable drift b∶ [0, T ] × ℝd → ℝd and dispersion
𝜎∶ [0, T ] × ℝd → ℝd×d , consider the forward model

dXt = b(t ,Xt ) dt + 𝜎(t ,Xt ) dWt , t ∈ [0, T ],X0 ∼ p0,

W = (Wt )t∈[0,T ] some standard d -dimensional Brownian motion

• under sufficient regularity conditions, the forward model has a solution X = (Xt )t∈[0,T ] with

marginal densities (pt )t∈[0,T ] such that the time-reversed process ⃗X t = XT−t , t ∈ [0, T ], solves

d ⃗X t = −b(T − t , ⃗X t ) dt + 𝜎(T − t , ⃗X t ) dW t , t ∈ [0, T ], ⃗X 0 ∼ pT ,

for some Brownian motion (W t )t∈[0,T ] and drift b∶ [0, T ] × ℝd → ℝd given by

bi(t , x) = bi(t , x) −
1

pt (x)

d

∑
j,k=1

𝜕
𝜕xj

[pt (x)𝜎ik (t , x)𝜎jk (t , x)], i = 1, … , d

⇝ time-reversed process solves a time-inhomogeneous SDE, now with drift −b(T − ⋅, ⋅) and
dispersion 𝜎(T − ⋅, ⋅)
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Classical DDMs

• standard convention: set 𝜎(t , x) = 𝛾(t)𝕀d for some scalar function 𝛾

 forward model is given by a (possibly time-inhomogeneous) Ornstein–Uhlenbeck process
with explicit transition densities, and the backward drift becomes

b(t , x) = b(t , x) − 𝛾 2(t) ∇ log pt (x)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
“score” of the forward model

 backwards process has the dynamics

d ⃗X t = ( − b(T − t , ⃗X t ) + 𝛾 2(T − t)∇ log pT−t ( ⃗X t )) dt + 𝛾(T − t) dW t t ∈ [0, T ], ⃗X 0 ∼ pT

• as t → T , the density of ⃗X t approaches p0 ⟹ simulating the reverse process generates new
data samples corresponding to the target p0

• note: we are free to choose the coefficients of our forward process (i.e., b and 𝜎), but the score
function ∇ log pt depends on p0 ⇝ needs to be estimated from the data (“score matching”)
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Statistical aspects of denoising diffusion models

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.

Statistical questions:

1. are diffusion models minimax learners (in terms of smoothness assumptions on p0)?

2. how can empirical lack of curse of dimensionality be explained? ⇝ submanifold hypothesis

3. alternative model designs with better theoretical/experimental justification?
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Diffusion models are minimax optimal distribution estimators1

“Is diffusion modeling a good distribution estimator? In other words, how can the estimation
error of the generated data distribution be explicitly bounded by the number of the training
data and in a data structure dependent way?”

Assumptions on the initial distribution with density p0 can be summarised by three key
components:

(i) p0 is compactly supported on a d -dimensional hypercube;

(ii) p0 is bounded away from zero on its support;

(iii) p0 has Besov smoothness of order s away from the support boundary (where s is allowed to
be sufficiently small to not necessarily imply continuity of p0) and is infinitely differentiable
close to the boundary.

Under these conditions, Oko et al. (2024) show that generated data distribution achieves the nearly
minimax optimal estimation rate n−

s
2s+d (log n)8 in total variation distance.

1K. Oko, S. Akiyama, and T. Suzuki (2023). Diffusion Models are Minimax Optimal Distribution Estimators. ICML.
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Convergence of diffusion models under the manifold hypothesis

Convergence rates (even optimal ones) expressed in terms of the ambient dimension d fall short of
capturing the empirical success of DDMs

 gap is related to the manifold hypothesis: real-world high-dimensional data often reside on
lower-dimensional manifolds, to which well-trained generative models are believed to
adapt

Tang and Yang (2024)2 establish (up to log factors) the minimax convergence rate C(d)n−
s+1
2s+d̃ in

Wasserstein-1 distance for distributions p0 such that

(i) p0 is supported on a compact and 𝛽-smooth d̃-dimensional submanifoldℳ, where 𝛽 ≥ 2;

(ii) p0 is bounded away from zero onℳ;

(iii) p0 has smoothness of order s ∈ [0, 𝛽 − 1] w.r.t. the volume measure onℳ.

2R. Tang and Y. Yang (2024). Adaptivity of Diffusion Models to Manifold Structures. AISTATS.
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 gap is related to the manifold hypothesis: real-world high-dimensional data often reside on
lower-dimensional manifolds, to which well-trained generative models are believed to
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• multiplicative factor C(d) in Tang and Yang’s convergence rate is of order d s+d̃/2 and thus
potentially very large for high ambient dimension d

• most recently, Azangulov et al. (2024)2 show that this multiplicative factor can be
significantly reduced to the order √d

2I. Azangulov, G. Deligiannidis and J. Rousseau (2024). Convergence of Diffusion Models Under the Manifold Hypothesis in
High-Dimensions. arXiv:2409.18804
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Denoising reflected diffusion models

Source: Lou and Ermon (2023). Reflected Diffusion Models. ICML.

Questions:

1. are diffusion models minimax learners (in terms of smoothness assumptions on p0)?

2. how can empirical lack of curse of dimensionality be explained? ⇝ submanifold hypothesis

3. alternative model designs with better theoretical/experimental justification?
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Denoising Reflected Diffusion Models (DRDMs) in a nutshell

• extend DDMs by constraining both forward and backward processes to a bounded domain D ⊂ ℝd

• forward process includes a reflection term to enforce boundary constraints,

dXt = b(Xt ) dt + 𝜎(Xt ) dWt + 𝜈(Xt ) dℓt , X0 ∈ D ,

where ℓt is the local time at the boundary 𝜕D and 𝜈 determines the direction of reflection

• under technical conditions (Cattiaux, 1988)3, time reversed process is reflected at the boundary as
well and solves

d ⃗X t = −b(t , ⃗X t ) dt + 𝜎( ⃗X t ) dW t + 𝜈( ⃗X t ) dℓt , ⃗X 0 ∼ pT

• retains Markov properties with constrained state space and specific Neumann boundary conditions

3Cattiaux (1988). Time reversal of diffusion processes with a boundary condition. SPA

10/26



Denoising Reflected Diffusion Models (DRDMs) in a nutshell

• extend DDMs by constraining both forward and backward processes to a bounded domain D ⊂ ℝd

• forward process includes a reflection term to enforce boundary constraints,

dXt = b(Xt ) dt + 𝜎(Xt ) dWt + 𝜈(Xt ) dℓt , X0 ∈ D ,

where ℓt is the local time at the boundary 𝜕D and 𝜈 determines the direction of reflection

• under technical conditions (Cattiaux, 1988)3, time reversed process is reflected at the boundary as
well and solves

d ⃗X t = −b(t , ⃗X t ) dt + 𝜎( ⃗X t ) dW t + 𝜈( ⃗X t ) dℓt , ⃗X 0 ∼ pT

• retains Markov properties with constrained state space and specific Neumann boundary conditions

3Cattiaux (1988). Time reversal of diffusion processes with a boundary condition. SPA

10/26



Comparison: DDMs versus their reflected counterparts

• domain: DDMs operate on ℝd , while DRDMs are constrained to a bounded domain D ⊂ ℝd

 DRDMs include reflection terms to ensure dynamics remain in D , while DDMs do not account for
spatial constraints

• implementation complexity:
DRDMs require managing
boundary local times and
Neumann conditions, introducing
additional complexity

• applications: DRDMs are better
suited for generating data
confined to specific domains or
bounded physical spaces

Source: Lou and Ermon (2023). Reflected Diffusion
Models. ICML.
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Generative modelling with reflected diffusions: Forward process

• assume that D ⊆ ℝd is an open, connected and bounded set with 𝒞∞ boundary 𝜕D

• consider the reflected time-homogeneous forward model

dXt = b(Xt ) dt + 𝜎(Xt ) dWt + 𝜈(Xt ) dℓt , X0 ∈ D ,

with smooth and bounded coefficients b∶ D → ℝd , 𝜎∶ D → ℝd⊗d and conormal reflection
determined by

𝜈(x) ≔ 1
2
𝜎𝜎⊤(x)n(x), x ∈ 𝜕D

⇝ n is the inward unit normal vector at the boundary 𝜕D , (ℓt )t≥0 is the local time at 𝜕D satisfying

ℓt = lim
𝜀→0

1
𝜀 ∫

t

0
1(𝜕D)𝜀(Xs) ds

 boundary reflection process reflects X in a conormal direction whenever it hits the boundary 𝜕D ,
thus constraining the state space of the diffusion to the compact set D

12/26



Forward process and SDE

• key requirement: precise understanding of the forward process’s limiting behaviour to
determine the runtime needed for the backward initialisation to approximate the true terminal
forward distribution pT

• subsequent simplification: choose b = ∇f and 𝜎 = √2f 𝕀d×d for some diffusivity
𝒞∞(D) ∋ f ∶ ℝd → [fmin, ∞) ⊂ (0, ∞)

⇝ time-homogeneous forward dynamics are described by the divergence form L2-generator

𝒜 = ∇ ⋅ f ∇ = ⟨∇f , ∇⋅⟩ + f Δ,

corresponding to the constrained SDE

dXt = ∇f (Xt ) dt + √2f (Xt ) dWt + 𝜈(Xt ) dℓt

 both the reflected forward and backward SDEs exhibit normal reflection at the boundary

• divergence theorem ⟹ invariant distribution of the forward Markov process X is the
(easy-to-sample-from) uniform distribution on D , i.e., 𝜇 = Leb |D/ Leb(D)
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Spectral properties

• under the given assumptions, there exist orthonormal eigenpairs (𝜆j , ej)j≥0 of the operator −∇ ⋅ f ∇
satisfying

0 = 𝜆0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ , 𝜆j ≍ j2/d

• transition densities can be expressed as

qt (x , y) = ∑
j≥0

e−t𝜆jej(x)ej(y), x , y ∈ D

• bounds on eigenfunctions:

‖ej‖Hk ≲ 𝜆k/2j ≍ jk/d , j ≥ 1, ‖ej‖∞ ≲ j𝜏, for 𝜏 > 1/2

 smoothing property of densities:

‖pt ‖Hk ≲ ‖p0‖∞e−tj
2/d

j𝜏+k/d , t > 0,

for arbitrary 𝜏 > 1/2 pt ∈ 𝒞∞(D) for any bounded initial density p0

14/26



Backward process and score approximation

• backward dynamics becomes

d ⃗X t = (∇f ( ⃗X t ) + 2f ( ⃗X t )∇ log pT−t ( ⃗X t )) dt + √2f ( ⃗X t ) dW t + 𝜈( ⃗X t ) dℓt ,

with initialisation ⃗X 0 ∼ pT

• spectral decomposition of the transition densities ⟹ score is explicitly given by

∇ log pt (x) =
∑j≥0 e

−t𝜆j ⟨p0, ej⟩L2∇ej(x)

∑j≥0 e
−t𝜆j ⟨p0, ej⟩L2ej(x)

, x ∈ D , t > 0

⇝ will be instrumental in analysing the score approximation properties of neural networks
underlying the algorithm
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Neural network classes

• use ReLU activation function 𝜎(y) = y ∨ 0, and, for any b, x ∈ ℝm , let 𝜎b(x) =
⎡
⎢
⎢
⎢
⎣

𝜎(x1 − b1)
𝜎(x2 − b2)

⋮
𝜎(xm − bm)

⎤
⎥
⎥
⎥
⎦

• consider functions of the form

𝜑(x) = AL𝜎bLAL−1𝜎bL−1 ⋯A1𝜎b1A0x ,

where Ai ∈ ℝWi+1×Wi , bi ∈ ℝWi+1 for i = 0, … , L, and where there are at most a total of S non-zero
entries of the Ai ’s and bi ’s and all entries are numerically at most B

 class of networks

Φ(L,W , S ,B) ≔
⎧

⎨
⎩

AL𝜎bLAL−1𝜎bL−1 ⋯A1𝜎b1A0 ∣ Ai ∈ ℝWi+1×Wi , bi ∈ ℝWi+1 ,
L

∑
i=0

(‖Ai‖0 + ‖bi‖0) ≤ S , max
i∈{0,…,L}

(‖Ai‖∞ ∨ ‖bi‖∞) ≤ B

⎫

⎬
⎭
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Generative modeling with reflected diffusions

• denote the true score by 𝔰∘(x , t) ≔ ∇ log pt (x), and assume we are given data samples

(X0,i)i∈[n]
i.i.d.∼ p0

• for a hypothesis class 𝒮 of neural networks and 𝔰 ∈ 𝒮 ∪ {𝔰∘}, define

L𝔰(x) ≔ 𝔼[∫
T

T
|𝔰(Xt , t) − ∇y log qt (x ,Xt )|2 ∣ X0 = x]

 T is the terminal runtime of the reflected forward process
 T ∈ (0, T ) is such that we run the reflected generative process, which is initialised with distribution𝒰(D),

until T − T

• denote the empirical denoising score matching loss associated to 𝔰 by

L̂𝔰,n ≔ 1
n

n

∑
i=1

L𝔰(X0,i),

and define the empirical score minimiser by

𝔰̂n ≔ argmin
𝔰∈𝒮

L̂𝔰,n
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• let X 𝔰 be a solution of the reflected SDE

dX 𝔰
t = (∇f (X 𝔰

t ) + 2f (X 𝔰
t )s(X 𝔰, t)) dt + √2f (X

𝔰
t ) dW t + 𝜈(X 𝔰

t ) dℓt , t ∈ [0, T , −T ],

X 𝔰
0 ∼ 𝒰(D),

for some Brownian motion (W t )t∈[0,T−T ] and local time (ℓt )t∈[0,T−T ] at the boundary 𝜕D , and

denote its density at time t by ⃗p𝔰t

• initialisation X 𝔰̂n
0 ∼ 𝒰(D)

 ( ⃗p𝔰̂nt )t∈[0,T ) are the densities of the backward process driven by the score estimate 𝔰̂n
 assessing the quality of the generated samples boils down to analysing the distance between the

distribution induced by p0 and the (random) distribution induced by ⃗p𝔰̂nT−T
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Main result

Theorem (Holk, CS and LT (2024))

Assume p0 = ̃p0 + 𝛼 with ̃p0 ∈ Hs
c (D), 𝛼 > 0, s ∈ ℕ ∩ (d/2, ∞), and let

T ≍ n
− 2s

((2−d/s)∧1)(2s+d) , T = s
𝜆1(2s + d)

log n.

Then, there exists a class of feed forward ReLU neural networks 𝒮, with explicit size constraints in
terms of n, d and s, such that

𝔼[TV(p0, ⃗p𝔰̂nT−T )] ≲ n−
s

2s+d (log n)3(log log n)1/2.

Letting p𝔰t be the density at time t of the time-reversed forward process

𝔼[TV(p0, ⃗p𝔰̂nT−T )] ≤ TV(p0, pT )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ (I)

+ TV(ℙ(XT ∈ ⋅ ∣ X0 ∼ p0),𝒰(D))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ (II)

+𝔼[TV(p𝔰
∘

T−T , p
𝔰̂n
T−T )]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕ (III)

.
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∘

T−T , p
𝔰̂n
T−T )]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕ (III)

.
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Error decomposition

𝔼[TV(p0, ⃗p𝔰̂nT−T )] ≤ TV(p0, pT )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ (I)

+ TV(ℙ(XT ∈ ⋅ ∣ X0 ∼ p0),𝒰(D))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ (II)

+𝔼[TV(p𝔰
∘

T−T , p
𝔰̂n
T−T )]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕ (III)

(I) represents the error induced by stopping early the backward process initialised by the true forward
terminal density pT at time T − T

 controlled via small time heat kernel bounds for the transition densities
 relies on Hölder continuity of p0: for 𝛽 ∈ [(2 − d/s) ∧ 1, 1],

|p0(x) − p0(y)| ≤ c𝛽|x − y |𝛽, x , y ∈ D

Lemma (Holk, CS and LT (2024))

There exists a constant C depending only on f , d ,D , 𝛽 and c𝛽 such that

TV(p0, pT ) ≤ CT 𝛽/2, T ≤ 1.
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Error decomposition

𝔼[TV(p0, ⃗p𝔰̂nT−T )] ≤ TV(p0, pT )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ (I)

+ TV(ℙ(XT ∈ ⋅ ∣ X0 ∼ p0),𝒰(D))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ (II)

+𝔼[TV(p𝔰
∘

T−T , p
𝔰̂n
T−T )]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕ (III)

(II) is the error associated to starting the backward process in its stationary distribution instead of pT
 controlled in terms of the spectral gap 𝜆1 of 𝒜, which can be lower bounded by

𝜆1 ≥ fmin/CP(D), where CP(D) is the Poincaré constant of the domain D

Lemma (Holk, CS and LT (2024))

It holds that

TV(ℙ(XT ∈ ⋅ ∣ X0 ∼ p0),𝒰(D)) ≤ √Leb(D)
2

‖p0‖L2e−𝜆1T , T > 0.
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Error decomposition
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+𝔼[TV(p𝔰
∘

T−T , p
𝔰̂n
T−T )]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕ (III)

(III) quantifies the error coming from running the backward process with the drift determined by the
estimated score 𝔰̂n instead of the true score 𝔰∘

 by Girsanov’s theorem and Pinsker’s inequality, controlled by

𝔼[∫
T

T
∫
D
|𝔰̂(x , t) − ∇ log pt (x)|2pt (x) dx dt]

 key to bounding it: equivalence between explicit and denoising score matching, i.e.,

∫
T

T
∫
D
|𝔰(y , t) − ∇ log pt (y)|2pt (y) dy dt = 𝔼[L𝔰(X0)] + C,

where C ≤ 0 is a constant that is independent of 𝔰
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Bounding the score matching error (III)

Generalisation loss can be bounded in terms of the minimal score approximation error over the class 𝒮
and the complexity of the induced function class ℒ ≔ {L𝔰 ∶ 𝔰 ∈ 𝒮} for a desired precision level 𝛿:

Theorem (Oko et. al (2023))

Suppose that sup𝔰∈𝒮‖L𝔰 − L𝔰∘‖∞ ≤ C(ℒ) < ∞. Then, for any 𝛿 > 0 such that𝒩(ℒ, ‖⋅‖∞, 𝛿) ≥ 3, it holds
that

𝔼[∫
T

T
∫
D
|𝔰̂(x , t) − ∇ log pt (x)|2pt (x) dx dt]

≤ 2 inf
𝔰∈𝒮∫

T

T
∫
D
|𝔰(x , t) − ∇ log pt (x)|2pt (x) dx dt + 2

C(ℒ)
n

(37
9

log𝒩(ℒ, ‖⋅‖∞, 𝛿) + 32) + 3𝛿.

 next step: control both the uniform loss upper bound C(ℒ) and the covering number𝒩(ℒ, ‖⋅‖∞, 𝛿)
for 𝛿 = n−2s/(2s+d) [3 since log𝒩(ℒ, ‖⋅‖∞, 𝛿) ≤ log𝒩(Φ(L,W , S ,B), ‖⋅‖∞,

𝛿
CT

) ≲ LS log ( LWBT
𝛿 )]

 final and most fundamental question: treatment of the explicit score approximation error
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Strategy for bounding the approximation error

1. Truncate

pt (x) =
∞
∑
j=0

e−𝜆jt ⟨p0, ej⟩ej(x) ≈
N

∑
j=0

e−𝜆jt ⟨p0, ej⟩ej(x) ≕ hN (x , t)

and use ∇hN (x , t) ≈ ∇pt (x)

 ∫
T

T
∫
ℝd

|s∘(x , t) −
∇hN (x , t)
hN (x , t)

|
2
pt (x) dx dt ≲ N−2s/d log T ⟹ N ≍ nd/(2s+d)

2. for an appropriately chosen discrete set of time points {ti}, use the spatial smoothness of hN (x , ti)
induced by the Sobolev smoothness of p0 to obtain an efficient neural network approximation of
hN (⋅, ti), based on general approximation results from Suzuki (2019)4;

3. approximate the space-time functions hN (x , t), ∇hN (x , t) by constructing a neural network
approximation of a polynomial time interpolation of the neural networks from Step 2., where the
interpolation degree is adapted to the parameters N , s and d .

4Suzuki (2019). Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate
and curse of dimensionality. ICLR
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Theorem (Holk, CS and LT (2024))

Let 0 < T < T and n ∈ ℕ sufficiently large be given with T ∈ Poly(n−1). Then, there exists a neural
network 𝔰 ∈ Φ(L(n),W (n), S(n),B(n)) satisfying

∫
T

T
∫
D
|𝔰(x , t) − ∇x log pt (x)|

2
pt (x) dx dt ≲ n−

2s
2s+d (log n)2(T + log(T−1)).

The size of the network is evaluated as

L(n) ≲ log n log log n,

‖W (n)‖∞ ≲ Mn
d

2s+d log n,

S(n) ≲ Mn
d

2s+d (log n)2, and

B(n) ≲ n
1

2s+d ∨ 1
T
,

where M ∈ O(|log T
T
|). Furthermore, the network can be chosen such that there exists a constant

C < ∞ depending only on p0 and D such that |𝔰(x , t)| ≤ C
√t

for all t ∈ [T , T ] and x ∈ D .
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Future Research

• extending the DRDM framework to data supported on lower-dimensional submanifolds ⇝
challenging because L2-techniques don’t translate naturally, but explicit form of Skorokhod map
for reflected BM in D = [0, 1]d gives a possible starting point

• Use score approximation techniques to unify the statistical analysis in the framework of denoising
Markov models (Benton et. al., 2024)5 for appropriate self-adjoint forward Markov processes

⇝ efficient sampling methods for the generative reflected process with estimated score?
• natural sampling schemes for reflected diffusions combine an Euler–Maryuama discretisation with a

projection (Słomiński, 1994)6 or rejection (Fishman et al., 2024)7 step
• how to alter the training objective to avoid training data replication while maintaining statistical

optimality?
• Vardanyan et. al (2024)8 suggest penalised Wasserstein-1-GAN generator obtained from

̂gn ∈ argmin
g∈𝒢

{W1(g♯𝒰d ,
1
n

n

∑
i=1

𝛿Xi) + 𝜆min
h∈ℋ∫

[0,1]d
|h ∘ g(u) − u|2 du},

5Benton, Shi, De Bortoli, Delegiannidis and Doucet (2024). From denoising diffusions to denoising Markov models. JRSS B
6Słomiński (1994). On approximation of solutions of multidimensional SDE’s with reflecting boundary conditions. SPA
7Fishman, Klarner, Mathieu, Hutchinson and De Bortoli (2024). Metropolis Sampling for Constrained Diffusion Models.

NeurIPS
8Vardanyan, Hunanyan, Galstyan, Minasyan and Dalalyan (2024). Statistically Optimal Generative Modeling with
Maximum Deviation from the Empirical Distribution. ICML
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