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Framework for data-driven stochastic optimal control

• consider a d -dimensional ergodic diffusion

dXt = b(Xt ) dt + 𝜎(Xt ) dWt ,

with stationary density 𝜋

• we assume that the drift b is unknown

• what challenges arise from this uncertainty when we want to optimally control the process and
how can they be solved in a data-driven way?

• concrete control problems considered in the literature:
1. impulse controls in 1D (Christensen, Strauch (2023); Christensen, Dexheimer, Strauch (2024+))
2. reflection controls (singular) (Christensen, Strauch, T. (2024); Christensen, Holk Thomsen, T. (2024+))

• common theme: long-term average costs only depend on 𝜋 and 𝜎 ⇝ given observations of the
(un)controlled process, first estimate 𝜋 and then estimate optimal control as an M-estimator
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Problem
Exploration vs. exploitation
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Reflected diffusions
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Reflection control problem

For simplicity, assume that b = −∇V for a gradient Lipschitz potential V ∶ ℝd → ℝ and 𝜎 = √2𝕀d , i.e.,

dXt = −∇V (Xt ) dt + √2 dWt .

Let D ⊂ ℝd be a sufficiently smooth bounded domain. Normally reflected process in D :

dXD
t = −∇V (XD

t ) dt + √2 dWt + n(XD
t ) d LDt⏟

local time at boundary 𝜕D

.
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Costs up to time T :

JT (D) ≔ ∫
T

0
c(XD

s ) ds + 𝜅LDT , c ∶ ℝd → ℝ+, 𝜅 > 0.

Example in 1D: interest rate model with central bank intervention
Long-term average costs: For 𝜋̃ (x) ≔ e−V (x), 𝜋̃ (D) = ∫D 𝜋̃ , 𝜋D = 𝜋̃/𝜋̃(D),

J(D) ≔ lim
T→∞

1
T
𝔼𝜇[JT (D)] = ∫

D
c(x)𝜋D (x) dx + 𝜅 ∫

𝜕D
𝜋D (x)ℋd−1(dx).

Optimisation objective: for a given domain class Θ determine

D∗ ∈ argmin
D∈Θ

J(D).

For known dynamics we therefore arrive at a shape optimisation problem.
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𝜋D (x)ℋd−1(dx).

Optimisation objective: for a given domain class Θ determine

D∗ ∈ argmin
D∈Θ

J(D).

For known dynamics we therefore arrive at a shape optimisation problem.

Central statistical observation

X is ergodic iff 𝜋̃ (ℝd ) < ∞, in which case 𝜋 = 𝜋̃/𝜋̃(ℝd ) and

𝜋D (x) = 𝜋(x)/𝜋(D), x ∈ D .
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Learning the optimal reflection boundary

• assume that we observe a full path (Xt )t∈[0,T ] of the uncontrolled process

• assume sufficient regularity and ergodicity assumptions on X and that 𝜋 has anisotropic Hölder
regularity of order 𝜷 = (𝛽1, … , 𝛽d ) ∈ (1, 𝔟]d

⇝ we can determine a fully data-driven kernel estimator 𝜋̂T such that

𝔼𝜋[‖𝜋̂T − 𝜋‖∞] ≲ Ψd ,𝜷(T ), 𝜷 = ( 1
d

d

∑
i=1

1
𝛽i
)
−1
,

with minimax optimal rate Ψd ,𝜷(T )

Proposition (Christensen, Strauch, T. (2024); Christensen, Holk, T. (2024+))

Let 𝜋̂∗T ≔ 𝜋̂T ∨ 𝜋, where 𝜋 ≥ 𝜋 on B(0, 𝜆). Let Θ be a family of domains s.t. B(0, 𝜆) ⊂ D ⊂ B(0, 𝜆) and
ℋd−1(𝜕D) ≤ Λ for any D ∈ Θ. For D̂T ∈ argminD∈Θ J(D , 𝜋̂∗T ), it holds for a warm start that

𝔼𝜇[J(D̂T ) − J(D∗)] ≲ Ψd ,𝜷(T ).
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⇝ this gives a bound on the simple regret only
⇝ how can we use this to determine strategies that overcome exploration vs. exploitation tradeoff

with sublinear regret rate? 5/13



Episodic domain learning in 1D

τ1 τ2 τ3 τ4 τ5

ξ0

0

θ0

6/13



Regret bound for episodic domain learning

Theorem (Christensen, Strauch, T. (2024)1; Christensen, Holk, T. (2024+)2)

There exists a purely data-driven episodic domain learning strategy Ẑ such that the expected regret
per time unit satisfies

1
T
𝔼[∫

T

0
c(X Ẑ

t ) dt + 𝜅LẐT ] − J(D∗) ≲

⎧
⎪

⎨
⎪
⎩

√log T
T 1/3 , d = 1,

( (log T )
2

T
)
1
3 , d = 2,

( log T
T

)
𝜷

3𝜷+d−2 , d ≥ 3.

1Strauch, Christensen and Trottner (2024). Learning to reflect: A unifying approach to data-driven control strategies. Bernoulli
2Christensen, Holk Thomsen and Trottner (forthcoming). Data-driven rules for multidimensional reflection problems. SIAM/ASA J.
Uncert. Quantif.

7/13



Numerical shape optimisation

• as target domains Θ only allow strongly star-shaped sets at 0 (appropriate when continuous costs
c are minimal close to the origin)

• for D ∈ Θ consider polytope approximation D̃N such that for a sufficiently large number N of
spanning points J(D) ≈ J(D̃N ) = ̃J(r1, r2, … , rN )

• we derive explicit formulas for ∇ ̃J(𝒓), making gradient-based optimisation methods accessible
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Figure 1: Simulated optimal shapes and corresponding path realizations of reflected processes. Top left: Brownian
motion with norm cost. Top right: Ornstein–Uhlenbeck process with norm cost. Bottom left: Brownian motion with
skewed cost. Bottom right: Ornstein–Uhlenbeck process with skewed cost.
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Figure 2: Optimised shapes for Brownian motion with reflection cost 𝜅 = 1 and cost function c = |⋅| (left) and
c(x , y , z) = √x2 + 5y2 + z2 (right).
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Figure 3: For each 𝜅, we plot the optimized reflection boundaries, where 𝜋 is a mixture of three Gaussians with
means at the points marked in red. Left: Norm cost function, c = |⋅|. Right: Cost function
c(x) = min{|x − 𝜇1|, |x − 𝜇2|, |x − 𝜇3|}.
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Figure 4: Estimates of the optimal shape (black) using kernel estimates after increasing periods of exploration.
Notably, after only T = 150, the estimated optimal shape has an associated cost only 0.61% higher than the true
optimum.
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Summary

• we study singular control problems for ergodic diffusion processes (not part of the talk but of the
paper: and Lévy processes) in presence of uncertainty on the characteristics

• our data-driven solutions are based on nonparametric adaptive estimation of quantities that
characterize the optimal control policy

• the exploration-exploitation tradeoff is overcome by an appropriate separation of the timeline into
exploration and exploitation phases

• we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of
our estimators

Thank you for your attention!

13/13



Summary

• we study singular control problems for ergodic diffusion processes (not part of the talk but of the
paper: and Lévy processes) in presence of uncertainty on the characteristics

• our data-driven solutions are based on nonparametric adaptive estimation of quantities that
characterize the optimal control policy

• the exploration-exploitation tradeoff is overcome by an appropriate separation of the timeline into
exploration and exploitation phases

• we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of
our estimators

Thank you for your attention!

13/13


