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Framework for data-driven stochastic optimal control

- consider a d-dimensional ergodic diffusion
dXt = b(Xt) dt + G(Xt) d Wt’

with stationary density 7

« we assume that the drift b is unknown

- what challenges arise from this uncertainty when we want to optimally control the process and
how can they be solved in a data-driven way?

- concrete control problems considered in the literature:

1. impulse controls in 1D (Christensen, Strauch (2023); Christensen, Dexheimer, Strauch (2024+))
2. reflection controls (singular) (Christensen, Strauch, T. (2024); Christensen, Holk Thomsen, T. (2024+))

« common theme: long-term average costs only depend on x and o ~> given observations of the
(un)controlled process, first estimate 7 and then estimate optimal control as an M-estimator
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Framework for data-driven stochastic optimal control

consider a d-dimensional ergodic diffusion
dXt = b(Xt) dt + O-(Xt) d Wt’

with stationary density 7
we assume that the drift b is unknown
what challenges arise from this uncertainty when we want to optimally control the process and
how can they be solved in a data-driven way?
concrete control problems considered in the literature:

1. impulse controls in 1D (Christensen, Strauch (2023); Christensen, Dexheimer, Strauch (2024+))

2. reflection controls (singular) (Christensen, Strauch, T. (2024); Christensen, Holk Thomsen, T. (2024+))
common theme: long-term average costs only depend on 7 and o ~» given observations of the
(un)controlled process, first estimate 7 and then estimate optimal control as an M-estimator

Problem

Exploration vs. exploitation
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Reflected diffusions
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Reflection control problem

For simplicity, assume that b = —VV for a gradient Lipschitz potential V : R - Rand ¢ = 2, i.e.,
dX; = —VV(X) dt +V2dW,.
Let D c R? be a sufficiently smooth bounded domain. Normally reflected process in D:

dXP = —vV(XP)dt + V2dW, + n(XP)d LP .

haad
local time at boundary 9D
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Reflection control problem

For simplicity, assume that b = —VV for a gradient Lipschitz potential V : R - Rand o = 2I, i.e.,
dX; = —vV(X) dt +V2dW,.
Let D c R? be a sufficiently smooth bounded domain. Normally reflected process in D:
dxP = —vv(xP)dt +V2dW; + n(XP)d LP.
local time atwljoundary aD
Costs up to time T:

;
JT(D):J C(XSD)dS-‘rK/.D, c:]Rd—>]R+,1<>0.
0

Example in 1D: interest rate model with central bank intervention
Long-term average costs: For 77(x) = e_V(X),ir(D) = JD 7, np = 7 /7(D),

J(D) = lim LEA(D)] = jD T e LD () €41 (dx).

Optimisation objective: for a given domain class ® determine

D* € argmin J(D).
De®

For known dynamics we therefore arrive at a shape optimisation problem. ,
413



Reflection control problem

Costs up to time T:
-
J7(D) = J cXP)ds+«xL?, c¢: RT >R, k>0.
0
Example in 1D: interest rate model with central bank intervention

Long-term average costs: For #(x) = e_V(X),ir(D) = JD 7, mp = 7 /7(D),

J(D) == lim l]E”[,IT(D)] = J c(xX)rp(x)dx + KJ (%) HI(dx).
Tooo T D oD
Optimisation objective: for a given domain class ® determine

D* € argmin J(D).
De®

For known dynamics we therefore arrive at a shape optimisation problem.
Central statistical observation

X is ergodic iff 7”r(]Rd) < oo, in which case & = f[/ir(JRd) and

np(x) = n(x)/n(D), x € D.
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Learning the optimal reflection boundary

« assume that we observe a full path (X;)se[o, 1] of the uncontrolled process

« assume sufficient regularity and ergodicity assumptions on X and that x has anisotropic Hélder
regularity of order B = (f;,..., B4) € (1,6]¢

~> we can determine a fully data-driven kernel estimator 71 such that

d —
E™|71 — oo < ¥y 57, B= (13 Z,‘%) 1,

i=1

with minimax optimal rate ¥, B(T)

Proposition (Christensen, Strauch, T. (2024); Christensen, Holk, T. (2024+))

Let 77 == 77 v 7, where 7 > 7 on B(0, ). Let © be a family of domains s.t. B(0, 1) ¢ D ¢ B(0, 1) and
FH91(aD) < A for any D € ©. For BT € argminpcg J(D, 77), it holds for a warm start that

E[J(Dr) - J(D)] < ¥y 5(T).
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Learning the optimal reflection boundary

« assume that we observe a full path (X;);e[o 1] of the uncontrolled process
« assume sufficient regularity and ergodicity assumptions on X and that & has anisotropic Hélder

regularity of order g = (f1...., f4) € (1,6]¢
~> we can determine a fully data-driven kernel estimator 71 such that

d
_ 1 1\
E™| |21 — 7loo | < ¥, 5(T), =\52,5) >
[l = ] < ¥ 5T, B=(= > 7)
with minimax optimal rate ‘I’dB(T)

Proposition (Christensen, Strauch, T. (2024); Christensen, Holk, T. (2024+))
Let 77 := & v &, where & > 7 on B(0, A). Let © be a family of domains s.t. B(0,1) ¢ D c B(0, A) and
HI1(aD) < A for any D € ©. For Dy € arg minpg J(D, 77), it holds for a warm start that

E[J(Dp) - J(D")] < ¥y 5(T).

~> this gives a bound on the simple regret only
~> how can we use this to determine strategies that overcome exploration vs. exploitation tradeoff
5/13
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Episodic domain learning in 1D
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Regret bound for episodic domain learning

Theorem (Christensen, Strauch, T. (2024)'; Christensen, Holk, T. (2024+)2)

There exists a purely data-driven episodic domain learning strategy Z such that the expected regret
per time unit satisfies

Jlog T d=1,

T1/3 °

.
1 Z Z o (log T)?\ *
?]E[L c(xtz)dt+;<L%]—j(D)s (feX)s,  d=

(IOLTT)ﬂHIZ—z, d>3.

'Strauch, Christensen and Trottner (2024). Learning to reflect: A unifying approach to data-driven control strategies. Bernoulli
“Christensen, Holk Thomsen and Trottner (forthcoming). Data-driven rules for multidimensional reflection problems. SIAM/ASA J.
Uncert. Quantif.
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Numerical shape optimisation

as target domains © only allow strongly star-shaped sets at 0 (appropriate when continuous costs
¢ are minimal close to the origin)

. for D € © consider polytope approximation Dy such that for a sufficiently large number N of
spanning points J(D) = J(Dy) = J(ry, 1, ..., ry)

« we derive explicit formulas for VJ(r), making gradient-based optimisation methods accessible
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Figure 1: Simulated optimal shapes and corresponding path realizations of reflected processes. Top left: Brownian
motion with norm cost. Top right: Ornstein—Uhlenbeck process with norm cost. Bottom left: Brownian motion with

skewed cost. Bottom right: Ornstein—-Uhlenbeck process with skewed cost.
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Figure 2: Optimised shapes for Brownian motion with reflection cost k = 1 and cost function ¢ = || (left) and

c(x, y,2) = [x2 + 5y% + 22 (right).
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Figure 3: For each k, we plot the optimized reflection boundaries, where 7 is a mixture of three Gaussians with
means at the points marked in red. Left: Norm cost function, ¢ = |-|. Right: Cost function
c(x) = min{[x — . [x = |, [x = ps}.
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Figure 4: Estimates of the optimal shape (black) using kernel estimates after increasing periods of exploration.
Notably, after only T = 150, the estimated optimal shape has an associated cost only 0.61% higher than the true

optimum.
12/13



« we study singular control problems for ergodic diffusion processes (not part of the talk but of the
paper: and Lévy processes) in presence of uncertainty on the characteristics

« our data-driven solutions are based on nonparametric adaptive estimation of quantities that
characterize the optimal control policy

« the exploration-exploitation tradeoff is overcome by an appropriate separation of the timeline into
exploration and exploitation phases

« we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of
our estimators
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« we study singular control problems for ergodic diffusion processes (not part of the talk but of the
paper: and Lévy processes) in presence of uncertainty on the characteristics

« our data-driven solutions are based on nonparametric adaptive estimation of quantities that
characterize the optimal control policy

« the exploration-exploitation tradeoff is overcome by an appropriate separation of the timeline into
exploration and exploitation phases

« we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of
our estimators

Thank you for your attention!
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