On friendships of Lévy and Markov additive processes

11th Conference on Lévy processes - Sofia

Lukas Trottner based on joint work with Leif Döring and Alex Watson 28 July 2025

University of Birmingham
University of Mannheim University College London

Lévy processes

- a (killed) Lévy process ξ is a càdlàg process with stationary, independent increments
- characteristic exponent ψ characterised via $\mathbb{E}[e^{i\theta\xi_t}] = e^{t\psi(\theta)}$
- Lévy-Khintchine formula:

$$\psi(\theta) = - \dagger + \mathrm{i} ax - \frac{1}{2}\sigma^2\theta^2 + \int_{\mathbb{R}} (\mathrm{e}^{\mathrm{i}\theta x} - 1 - \mathrm{i}\theta x \mathbf{1}_{[-1,1]}(x)) \, \Pi(\mathrm{d}x), \quad \theta \in \mathbb{R}$$

- † is the killing rate, $a \in \mathbb{R}$ is the centre, $\sigma \ge 0$ the Gaussian coefficient, Π is the Lévy measure that controls size and frequency of jumps of the process
- (a, σ, Π) is called the characteristic triplet of ψ

 $----\bar{\xi}_t = \sup_{s \le t} \xi_s$, the running supremum

 $---\xi$, a Lévy process

 $\overline{\xi}_t = \sup_{s \le t} \xi_s$, the running supremum

--- H_t^+ , the ascending ladder height process: suprema 'stitched together'

- $---\xi$, a Lévy process
- $\overline{\xi}_t = \sup_{s \le t} \xi_s$, the running supremum
- --- H_t^+ , the ascending ladder height process: suprema 'stitched together'

 H^{\pm} are subordinators (increasing Lévy processes).

Spatial Wiener-Hopf factorisation

Let ψ^{\pm} denote the characteristic exponents of H^{\pm} (for some specific scaling of local times at the supremum and infimum)

Theorem

- (i) For an independent $\operatorname{Exp}(q)$ -distributed random time e_q it holds that $\overline{\xi}_{e_q}$ and $\overline{\xi}_{e_q} \xi_{e_q}$ are infinitely divisible and independent, where $\overline{\xi}_{e_a} \xi_{e_a} \stackrel{d}{=} \underline{\xi}_{e_q}$.
- (ii) For appropriate scalings of local times at the supremum and infimum, it holds that

$$\psi(\theta) = -\psi^{-}(-\theta)\psi^{+}(\theta), \quad \theta \in \mathbb{R}.$$

Spatial Wiener-Hopf factorisation

Let ψ^{\pm} denote the characteristic exponents of H^{\pm} (for some specific scaling of local times at the supremum and infimum)

Theorem

- (i) For an independent $\operatorname{Exp}(q)$ -distributed random time e_q it holds that $\bar{\xi}_{e_q}$ and $\bar{\xi}_{e_q} \xi_{e_q}$ are infinitely divisible and independent, where $\bar{\xi}_{e_a} \xi_{e_a} \stackrel{d}{=} \xi_{e_a}$.
- (ii) For appropriate scalings of local times at the supremum and infimum, it holds that

$$\psi(\theta) = -\psi^{-}(-\theta)\psi^{+}(\theta), \quad \theta \in \mathbb{R}.$$

Problem

Given a LK exponent ψ , only in rare special cases can the Wiener–Hopf factors be explicitly determined.

The inverse problem

- start with two subordinators H^\pm having LK exponents ψ^\pm
- is there a Lévy process ξ with LK exponent ψ such that $\psi = -\psi^-(-\cdot)\psi^+$?
- when such ξ exists, we call H^{\pm} friends and ξ the bonding process

The inverse problem

- start with two subordinators H^{\pm} having LK exponents ψ^{\pm}
- is there a Lévy process ξ with LK exponent ψ such that $\psi = -\psi^-(-\cdot)\psi^+$?
- when such ξ exists, we call H^{\pm} friends and ξ the bonding process

Vigon's powerful point of view

For $\varphi \in \mathcal{S}(\mathbb{R})$ let

$$\langle \mathbb{T}^2\Pi, \varphi \rangle := \int_{\mathbb{R}} (\varphi(x) - \varphi(0) - \varphi'(x) \mathbf{1}_{[-1,1]}(x)) \, \Pi(\mathrm{d}x), \quad \langle \mathbb{T}\Pi^{\pm}, \varphi \rangle := \int_{\mathbb{R}} (\varphi(x) - \varphi(0)) \, \Pi^{\pm}(\mathrm{d}x).$$

Then, in the sense of tempered distributions

$$\psi = \mathcal{F}\Big\{\underbrace{-\dagger \delta - a\delta' + \frac{\sigma^2}{2}\delta'' + \Gamma^2\Pi}_{=:G}\Big\}, \quad \psi^{\pm} = \mathcal{F}\Big\{\underbrace{-\dagger^{\pm}\delta - d^{\pm}\delta' + \Gamma\Pi^{\pm}}_{=:G^{\pm}}\Big\},$$

and the Wiener-Hopf factorisation becomes the convolution equality

$$G = -\widetilde{G}^- * G^+.$$

The Theorem of friends

- d^{\pm} drift of H^{\pm}
- Π^{\pm} Lévy measure of H^{\pm}
- H^{\pm} are compatible if $d^{\mp} > 0$ implies that Π^{\pm} has a càdlàg density $\partial \Pi^{\pm}$ that can be expressed as the tail of a signed measure

The Theorem of friends

- d^{\pm} drift of H^{\pm}
- Π^{\pm} Lévy measure of H^{\pm}
- H^{\pm} are compatible if $d^{\mp} > 0$ implies that Π^{\pm} has a càdlàg density $\partial \Pi^{\pm}$ that can be expressed as the tail of a signed measure

Theorem (Vigon, 2002)^{1,2}

 H^+ and H^- are friends if, and only if, they are compatible and the function

$$Y(x) = \begin{cases} \int_{x+}^{\infty} (\Pi^{-}(y-x,\infty) - \psi^{-}(0)) \Pi^{+}(dy) + d^{-}\partial\Pi^{+}(x), & x > 0, \\ \int_{(-x)+}^{\infty} (\Pi^{+}(y+x,\infty) - \psi^{+}(0)) \Pi^{-}(dy) + d^{+}\partial\Pi^{-}(-x), & x < 0, \end{cases}$$

is a.e. increasing on $(0, \infty)$ and a.e. decreasing on $(-\infty, 0)$.

If they are friends, then Υ is a.e. the right/left tail of the Lévy measure of the bonding process.

¹V. Vigon (2002). Votre Lévy rampe-t-il? J. Lond. Math. Soc.

²V. Vigon (2002). Simplifiez vos Lévy en titillant la factorisation de Wiener-Hopf. *PhD Thesis*.

Philanthropy

- a subordinator H⁺ is called philanthropist if its Lévy measure admits a decreasing density
- \iff philanthropists are subordinators that are friends with pure drift subordinators $H_t^- = d^-t$
- ⇒ spectrally negative Lévy processes that do not drift to -∞ can be factorised into a philanthropist and a pure drift

Philanthropy

- a subordinator H^+ is called philanthropist if its Lévy measure admits a decreasing density
- \iff philanthropists are subordinators that are friends with pure drift subordinators $H_t^- = d^-t$
 - ⇒ spectrally negative Lévy processes that do not drift to -∞ can be factorised into a philanthropist and a pure drift

Theorem (Vigon, 2002)

Any two philanthropists are friends.

Philanthropy

- a subordinator H^+ is called philanthropist if its Lévy measure admits a decreasing density
- \iff philanthropists are subordinators that are friends with pure drift subordinators $H_t^- = d^-t$
 - ⇒ spectrally negative Lévy processes that do not drift to -∞ can be factorised into a philanthropist
 and a pure drift

Theorem (Vigon, 2002)

Any two philanthropists are friends.

Example (Kuznetsov, Kyprianou, Pardo, van Schaik, 2011)³

For $\beta_{\pm} \geq 0, \gamma_{\pm} \in (0, 1)$, the exponents

$$\psi^{\pm}(\theta) = \frac{\Gamma(\beta_{\pm} + \gamma_{\pm} - i\theta)}{\Gamma(\beta_{\pm} - i\theta)},$$

are philanthropists and their bonding process is called a hypergeometric Lévy process.

³Kuznetsov, A., Kyprianou, A. E., Pardo, J. C. and K. van Schaik (2011). A Wiener-Hopf Monte-Carlo simulation technique for Lévy processes. *Ann. Appl. Probab*

Markov additive processes

• a Feller process (ξ, J) is a MAP on $\mathbb{R} \times \{1, ..., n\}$ if

$$\mathbb{E}^{0,i} [f(\xi_{t+s} - \xi_t, J_{t+s}) \mid \mathcal{F}_t] \mathbf{1}_{\{t < \zeta\}} = \mathbb{E}^{0,J_t} [f(\xi_s, J_s)] \mathbf{1}_{\{t < \zeta\}}$$

- · equivalently, a MAP can be characterised as a regime-switching Lévy process
 - $\xi^{(i)}$ is a Lévy process for any phase $i \in [n]$
 - J is a Markov chain with transition matrix Q
 - when *J* is in state *i*, run an independent copy of $\xi^{(i)}$
 - phase switches from i to j trigger an additional jump with distribution $F_{i,j}$

Analytic characterisation of MAPs

- ψ_i LK exponent of $\xi^{(i)}$
- Π_i Lévy measure of $\xi^{(i)}$ and denote $\Pi_{i,j} \coloneqq q_{i,j} F_{i,j}$
- call $\Pi = (\Pi_{i,j})_{i,j \in [n]}$ Lévy measure matrix of ξ
- we have $\mathbb{E}^{0,i}[\mathbf{e}^{\mathbf{i}\theta\xi_t}\mathbf{1}_{\{J_t=j\}}] = (\exp(t\Psi(\theta)))_{i,j}$ with characteristic matrix exponent

$$\begin{split} \Psi(\theta) &= \operatorname{diag} \left((\psi_i(\theta))_{i \in [n]} \right) + Q \odot \left(\widehat{F_{i,j}}(\theta) \right)_{i,j \in [n]} \\ &= \begin{bmatrix} \psi_1(\theta) + q_{1,1} & \widehat{\Pi}_{1,2}(\theta) & \cdots & \widehat{\Pi}_{1,n}(\theta) \\ \widehat{\Pi}_{2,1}(\theta) & \psi_2(\theta) + q_{2,2} & \cdots & \widehat{\Pi}_{2,n}(\theta) \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{\Pi}_{n,1}(\theta) & \widehat{\Pi}_{n,2}(\theta) & \cdots & \psi_n(\theta) + q_{n,n} \end{bmatrix} \end{split}$$

MAP Wiener-Hopf factorisation

- ascending/descending ladder height MAPs (H[±], J[±]): ordinator H[±] tracks new suprema/infima of ξ and J[±] tracks phases during which they occur
- they are MAP subordinators (increasing ordinators) with matrix exponents Ψ^{\pm}
- we always assume that J is irreducible and hence has an invariant distribution represented by a vector π

Theorem (Dereich, Döring, Kyprianou (2017)⁴; Ivanovs (2017)⁵; Döring, T., Watson (2024)⁶)

$$\boldsymbol{\Psi}(\boldsymbol{\theta}) = -\boldsymbol{\Delta}_{\boldsymbol{\pi}}^{-1} \boldsymbol{\Psi}^{-} (-\boldsymbol{\theta})^{\top} \boldsymbol{\Delta}_{\boldsymbol{\pi}} \boldsymbol{\Psi}^{+} (\boldsymbol{\theta}),$$

where Δ_{π} is the diagonal matrix containing π .

⁴S. Dereich, L. Döring and A.E. Kyprianou (2017). Reals self-similar processes started from the origin. *Ann. Probab.*

⁵J. Ivanovs (2017). Splitting and time-reversal for Markov additive processes. *Stochastic Process. Appl.*

 $^{^6}$ L. Döring, L. Trottner and A.R. Watson (2024). Markov additive friendships. *Trans. Amer. Math. Soc.*

The inverse problem

- we call a MAP subordinator (H^+, J^+) a π -friend of (H^-, J^-) if
 - 1. $\Psi := -\Delta_n^{-1} \Psi^-(-\cdot)^\top \Delta_n \Psi^+$ is a characteristic MAP exponent 2. $\pi^\top \Psi(0) < \mathbf{0}^\top$
- then, a MAP (ξ, J) with matrix exponent Ψ is called bonding MAP
- · the second condition ensures that
 - π is a valid candidate for an invariant distribution of J
 - (H^+,J^+) is a π -friend of (H^-,J^-) iff (H^-,J^-) is a π -friend of (H^+,J^+) \rightsquigarrow symmetric relation and the bonding MAP between (H^-,J^-) and (H^+,J^+) is the dual MAP of (ξ,J)

The inverse problem

- we call a MAP subordinator (H^+, J^+) a π -friend of (H^-, J^-) if
 - 1. $\Psi := -\Delta_n^{-1} \Psi^-(-\cdot)^\top \Delta_n \Psi^+$ is a characteristic MAP exponent 2. $\pi^\top \Psi(0) < \mathbf{0}^\top$
- then, a MAP (ξ, I) with matrix exponent Ψ is called bonding MAP
- · the second condition ensures that
 - π is a valid candidate for an invariant distribution of J
 - (H^+, J^+) is a π -friend of (H^-, J^-) iff (H^-, J^-) is a π -friend of $(H^+, J^+) \rightsquigarrow$ symmetric relation and the bonding MAP between (H^-, J^-) and (H^+, J^+) is the dual MAP of (ξ, J)

Questions

- 1. Are there necessary and sufficient conditions for π -friendship generalising Vigon's characterisation of Lévy friendships?
- 2. Is there a concept of MAP philanthropy?

π -compatibility

 (H^+, J^+) and (H^-, J^-) are called π -compatible if

- 1. $d_i^{\mp} > 0$, then $\Pi_{i,j}^{\pm}$ has a càdlàg density $\partial \Pi_{i,j}^{\pm}$ on $(0,\infty)$ and $\partial \Pi_{i,i}^{\pm}$ can be expressed as the tail of a signed measure;
- 2. balance conditions on the characteristics are fulfilled that in particular require

•
$$q_{i,j}^+ d_i^- F_{i,j}^+(\{0\}) = \frac{\pi(j)}{\pi(i)} q_{j,i}^- d_i^+ F_{j,i}^-(\{0\})$$

· the function

$$x \mapsto q_{i,j}^+ \left(\underbrace{\int_0^\infty \mathbf{1}_{\{y > x\}} \overline{\Pi}_i^-(y - x) F_{i,j}^+(\mathrm{d}y) + d_i^- f_{i,j}^+(x)}_{=\widetilde{\chi}_i^- * F_{i,j}^+(\mathrm{d}x)/\,\mathrm{d}x} \right) - \underbrace{\frac{\pi(j)}{\pi(i)} q_{j,i}^- \left(\underbrace{\int_0^\infty \mathbf{1}_{\{-x < y\}} \overline{\Pi}_j^+(x + y) F_{j,i}^-(\mathrm{d}y) + d_j^+ f_{j,i}^-(-x)}_{=\chi_j^+ * \widetilde{F}_{j,i}^-(\mathrm{d}x)/\,\mathrm{d}x} \right)}_{=\chi_j^+ * \widetilde{F}_{j,i}^-(\mathrm{d}x)/\,\mathrm{d}x}$$

is a.e. equal to a right-continuous function of bounded variation that converges to 0 at $\pm \infty$. Above,

$$\chi_i^{\pm}(\mathrm{d}x) = d_i^{\pm} \delta_0(\mathrm{d}x) + \mathbf{1}_{(0,\infty)}(x) \overline{\Pi}_i^{\pm}(x) \, \mathrm{d}x,$$

denotes the invariant overshoot measure of $H^{\pm,(i)}$;

3. the vectors $-\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)\mathbf{1}$ and $-\pi^{\top}\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)$ are nonnegative.

π -compatibility

 (H^+,J^+) and (H^-,J^-) are called π -compatible if

- 1. $d_i^{\mp} > 0$, then $\Pi_{i,j}^{\pm}$ has a càdlàg density $\partial \Pi_{i,j}^{\pm}$ on $(0,\infty)$ and $\partial \Pi_{i,i}^{\pm}$ can be expressed as the tail of a signed measure;
- 2. balance conditions on the characteristics are fulfilled that in particular require

•
$$q_{i,j}^+ d_i^- F_{i,j}^+(\{0\}) = \frac{\pi(j)}{\pi(i)} q_{j,i}^- d_i^+ F_{j,i}^-(\{0\})$$

· the function

$$x \mapsto q_{i,j}^+ \left(\underbrace{\int_0^\infty \mathbf{1}_{\{y > x\}} \overline{\Pi}_i^-(y - x) F_{i,j}^+(\mathrm{d}y) + d_i^- f_{i,j}^+(x)}_{=\widetilde{\chi}_i^- * F_{i,j}^+(\mathrm{d}x)/\,\mathrm{d}x} \right) - \underbrace{\frac{\pi(j)}{\pi(i)} q_{j,i}^- \left(\underbrace{\int_0^\infty \mathbf{1}_{\{-x < y\}} \overline{\Pi}_j^+(x + y) F_{j,i}^-(\mathrm{d}y) + d_j^+ f_{j,i}^-(-x)}_{=\chi_j^+ * \widetilde{F}_{j,i}^-(\mathrm{d}x)/\,\mathrm{d}x} \right)}_{=\chi_j^+ * \widetilde{F}_{j,i}^-(\mathrm{d}x)/\,\mathrm{d}x}$$

is a.e. equal to a right-continuous function of bounded variation that converges to 0 at $\pm\infty$. Above,

$$\chi_i^{\pm}(\mathrm{d}x) = d_i^{\pm} \delta_0(\mathrm{d}x) + \mathbf{1}_{(0,\infty)}(x) \overline{\Pi}_i^{\pm}(x) \, \mathrm{d}x,$$

denotes the invariant overshoot measure of $H^{\pm,(i)}$;

3. the vectors $-\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)\mathbf{1}$ and $-\pi^{\top}\Delta_{\pi}^{-1}\Psi^{-}(0)^{\top}\Delta_{\pi}\Psi^{+}(0)$ are nonnegative.

 π -compatibility is **necessary** for π -friendship \rightsquigarrow There are **no** MAP philanthropists!

The Theorem of friends

- denote by Π^\pm the Lévy measure matrix s.t. $\Pi^\pm_{i,i}=\Pi^\pm_i$ and $\Pi^\pm_{i,j}=q^\pm_{i,j}F^\pm_{i,j}$
- let $\partial \Pi^\pm$ be the Lévy density matrix s.t. $\partial \Pi_{i,j}$ is the density of the absolutely continuous part of $\Pi^+_{i,j}$

Theorem (Döring, T. and Watson, 2024)

 (H^+, J^+) and (H^-, J^-) are π -friends if, and only if, they are π -compatible and the matrix-valued function

$$\Upsilon(x) = \begin{cases} \left(\int_{x+}^{\infty} \Delta_{\pi}^{-1} \left(\overline{\Pi}^{-}(y-x) - \Psi^{-}(0) \right)^{\top} \Delta_{\pi} \Pi^{+}(\mathrm{d}y) + \Delta_{d}^{-} \partial \Pi^{+}(x) \right), & x > 0 \\ \left(\int_{(-x)+}^{\infty} \Delta_{\pi}^{-1} \left(\Pi^{-}(\mathrm{d}y) \right)^{\top} \Delta_{\pi} \left(\overline{\Pi}^{+}(y+x) - \Psi^{+}(0) \right) + \Delta_{\pi}^{-1} \left(\Delta_{d}^{+} \partial \Pi^{-}(-x) \right)^{\top} \Delta_{\pi} \right), & x < 0 \end{cases}$$

is a.e. equal to a function decreasing on $(0, \infty)$ and increasing on $(-\infty, 0)$.

If they are π -friends, then Υ is a.e. the right/left tail of the Lévy measure matrix of the bonding MAP.

Fellowship

We call (H^+, J^+) and (H^-, J^-) π -fellows if they have decreasing Lévy density matrices $\partial \Pi^+$ and $\partial \Pi^-$ on $(0, \infty)$, and the matrix functions

$$-\Delta_{\pi}^{-1} \Psi^{-}(0)^{\top} \Delta_{\pi} \overline{\Pi}^{+}(x) + \Delta_{d}^{-} \partial \Pi^{+}(x), \quad x > 0,$$

and

$$-\boldsymbol{\Delta}_{\boldsymbol{\pi}}^{-1}\boldsymbol{\Psi}^{+}(0)^{\top}\boldsymbol{\Delta}_{\boldsymbol{\pi}}\overline{\boldsymbol{\Pi}}^{-}(x)+\boldsymbol{\Delta}_{d}^{+}\boldsymbol{\partial}\boldsymbol{\Pi}^{-}(x), \quad x>0,$$

are decreasing.

Note: Any two Lévy fellows are Lévy philanthropists and therefore friends.

Recall:

 H^+ is a Lévy philanthropist $\iff H^+$ has a decreasing Lévy density $\iff H^+$ is friends with any pure drift

Recall:

 H^+ is a Lévy philanthropist $\iff H^+$ has a decreasing Lévy density $\iff H^+$ is friends with any pure drift

Lemma (Döring, T. and Watson, 2024)

A MAP subordinator (H^+, J^+) with decreasing Lévy density matrix is a π -friend of a pure drift MAP (H^-, J^-) (that is, $H^-_t = \int_0^t d^-_{J^-_s} \, \mathrm{d}s$) if, and only if, they are π -compatible π -fellows.

Recall:

 H^+ is a Lévy philanthropist $\iff H^+$ has a decreasing Lévy density $\iff H^+$ is friends with any pure drift

Lemma (Döring, T. and Watson, 2024)

A MAP subordinator (H^+,J^+) with decreasing Lévy density matrix is a π -friend of a pure drift MAP (H^-,J^-) (that is, $H^-_t=\int_0^t d^-_{J^-_s} \mathrm{d}s$) if, and only if, they are π -compatible π -fellows.

Recall: Any two Lévy philanthropists are friends.

Recall:

 H^+ is a Lévy philanthropist $\iff H^+$ has a decreasing Lévy density $\iff H^+$ is friends with any pure drift

Lemma (Döring, T. and Watson, 2024)

A MAP subordinator (H^+,J^+) with decreasing Lévy density matrix is a π -friend of a pure drift MAP (H^-,J^-) (that is, $H^-_t=\int_0^t d^-_{J^-_s} ds$) if, and only if, they are π -compatible π -fellows.

Recall: Any two Lévy philanthropists are friends.

Theorem (Döring, T. and Watson, 2024)

Any two π -compatible π -fellows are π -friends.

Examples

only known MAP WH-factorisation is from Kyprianou's deep factorisation of the stable process⁷

- to generate explicit friendships it is crucial to find manageable criteria for π -compatibility
- · we give such criteria in two cases
 - 1. at least one of the putative friends is a pure drift
 - 2. both candidates have zero drift parts and no transitional atoms (i.e., $q_{i,i}^{\pm}F_{i,i}^{\pm}(\{0\})=0$)
- the first case allows us to give a general construction principle for spectrally one-sided MAPs and modulated Brownian motions starting from the WH-factors
- combining the compatibility criteria from both cases, we construct MAPs jumping in both directions (Markov modulated double exponential jump diffusions)

⁷A.E. Kyprinaou (2016). Deep factorisation of the stable process. *Electron. J. Probab.*

Example for one-sided jumps

absolutely monotone Lévy densities

$$\Pi_i^+(dx) = \int_{\mathbb{R}_+} e^{-xy} \, \mu_i^+(dy) \, dx, \quad x > 0, i = 1, 2,$$

with representing measures μ_i^+ supported on (a_i^+, ∞) for some $a_i^+ > 0$ such that

1.
$$d_1^+ + \int_{0+}^{\infty} \overline{\Pi}_1^+(x) \, \mathrm{d}x = \frac{\pi(2)}{\pi(1)} \frac{q_{2,1}^+ d_2^-}{q_{1,2}^-}, \quad d_2^+ + \int_{0+}^{\infty} \overline{\Pi}_2^+(x) \, \mathrm{d}x = \frac{\pi(1)}{\pi(2)} \frac{q_{1,2}^+ d_1^-}{q_{2,1}^-};$$

2.
$$a_i^+ \left(1 + \frac{d_i^-}{q_{i,j}^-} a_i^+\right) > \frac{q_{j,i}^-}{d_j^-}$$

3. $F_{i,i}^+(dx)|_{(0,\infty)} = f_{i,i}^+(x) dx$ such that

$$f_{1,2}^{+}(x) = \frac{\pi(2)}{\pi(1)} \frac{q_{2,1}^{-}}{q_{1,2}^{+} d_{1}^{-}} \overline{\Pi}_{2}^{+}(x), \quad f_{2,1}^{+}(x) = \frac{\pi(1)}{\pi(2)} \frac{q_{1,2}^{-}}{q_{2,1}^{+} d_{2}^{-}} \overline{\Pi}_{1}^{+}(x),$$

Then (H^+, J^+) and the pure drift MAP (H^-, J^-) are friends with Lévy measure matrix

$$\boldsymbol{\varPi}(dx) = \left[\begin{array}{cc} \mathbf{1}_{\{x>0\}} q_{1,2}^{-} \int_{R_{+}} \left(1 + \frac{d_{1}^{-}y}{q_{12}} - \frac{q_{2,1}^{-}}{d_{2}^{-}y}\right) e^{-xy} \, \mu_{1}^{+}(dy) \, dx & \frac{\pi(2)}{\pi(1)} q_{2,2}^{-} \left\{ \left(q_{2,2}^{+} + q_{1,1}^{-} \frac{d_{2}^{+}}{d_{1}^{-}}\right) \delta_{0}(dx) + \mathbf{1}_{\{x>0\}} \frac{q_{1,1}^{-}}{q_{1}^{-}} \int_{R_{+}} \frac{e^{-xy}}{y} \, \mu_{1}^{+}(dy) \, dx \right\} \\ \frac{\pi(2)}{\pi(2)} q_{1,1}^{-} \left\{ \left(q_{1,1}^{+} + q_{2,2}^{-} \frac{d_{1}^{+}}{d_{1}^{-}}\right) \delta_{0}(dx) + \mathbf{1}_{\{x>0\}} \frac{q_{2,2}^{-}}{d_{2}^{-}} \int_{R_{+}} \frac{e^{-xy}}{y} \, \mu_{1}^{+}(dy) \, dx \right\} & \mathbf{1}_{\{x>0\}} q_{2,1}^{-} \int_{R_{+}} \left(1 + \frac{d_{2}^{-}y}{q_{2,1}} - \frac{q_{1,2}^{-}}{q_{1,y}^{-}}\right) e^{-xy} \, \mu_{2}^{+}(dy) \, dx \right\} \end{array} \right].$$

Uniqueness of the MAP Wiener-Hopf factorisation

Question

- If (H^{\pm}, J^{\pm}) are friends, are they equal in law to the ascending/descending ladder height processes of their bonding MAP?
- This is a question of uniqueness of the MAP Wiener-Hopf factorisation: given two factorisations
 of the same MAP matrix exponent, are the factors equal up to premultiplication by a diagonal
 matrix with positive entries?

Uniqueness of the MAP Wiener-Hopf factorisation - partial answer

- \mathcal{A}_0 is the class of matrix exponents of irreducible and finite mean MAP subordinators
- \mathcal{A}_{∞} is the class of MAP subordinator exponents Ψ such that for any i

$$\lim_{\theta \to \pm \infty} |\psi_i(\theta)| = \infty$$

Theorem (Döring, T. and Watson (2024))

Let (H^{\pm}, J^{\pm}) be irreducible π -friends s.t.

- · the bonding MAP is irreducible, and
- $\Psi^{\pm} \in \mathcal{A}_0 \cap \mathcal{A}_{\infty}$, and the exponents of the ladder height processes of the bonding MAP belong to $\mathcal{A}_0 \cap \mathcal{A}_{\infty}$.

Then (H^{\pm}, J^{\pm}) are versions of the ladder height processes of their bonding MAP.

Some open questions

· Vigon's analysis for Lévy processes demonstrates that if at least one of the factors is unkilled,

$$-\psi^{-}(-\theta)\psi^{+}(\theta) = ia\theta - \frac{1}{2}\sigma^{2}\theta^{2} + \int_{\mathbb{R}} (e^{i\theta x} - 1 - i\theta x \mathbf{1}_{[-1,1]}(x)) \nu(dx),$$

where ν is a signed measure without atom at 0 such that $|\nu|$ integrates $x \mapsto 1 \wedge x^2$

- $X \sim \mu$ is called quasi-infinitely divisible⁸ if there is an infinitely divisible and independent r.v. Y s.t. X + Y is infinitely divisible.
- then $\hat{\mu} = e^{\psi}$, where ψ has a Lévy–Khintchine representation with a signed measure. Conversely, e^{ψ} is not necessarily a characteristic function \rightsquigarrow sufficient conditions for $-\psi^-(-\cdot)\psi^+$ to generate a quasi-infinitely divisible distribution?
- MAP-analogue to hypergeometric Lévy processes?
- Friendships from inverted WH-factorisations

$$\underbrace{\Psi(\theta)^{-1}}_{\text{"="\mathcal{F}U$'}(\theta)} = -\underbrace{\Psi^{+}(\theta)^{-1}}_{\text{"="\mathcal{F}U$'}(\theta)} \Delta_{\pi}^{-1} \underbrace{(\Psi^{-}(-\theta)^{\top})^{-1}}_{\text{"="\mathcal{F}U$'}(-\theta)^{\top}} \Delta_{\pi}$$

⁸A. Lindner, K. Pan, K. Sato (2018). On quasi-infinitely divisible distributions. *Trans. Amer. Math. Soc.*

Some open questions

· Vigon's analysis for Lévy processes demonstrates that if at least one of the factors is unkilled,

$$-\psi^{-}(-\theta)\psi^{+}(\theta) = ia\theta - \frac{1}{2}\sigma^{2}\theta^{2} + \int_{\mathbb{R}} (e^{i\theta x} - 1 - i\theta x \mathbf{1}_{[-1,1]}(x)) \nu(dx),$$

where ν is a signed measure without atom at 0 such that $|\nu|$ integrates $x \mapsto 1 \wedge x^2$

- $X \sim \mu$ is called quasi-infinitely divisible⁸ if there is an infinitely divisible and independent r.v. Y s.t. X + Y is infinitely divisible.
- then $\hat{\mu} = e^{\psi}$, where ψ has a Lévy–Khintchine representation with a signed measure. Conversely, e^{ψ} is not necessarily a characteristic function \rightsquigarrow sufficient conditions for $-\psi^-(-\cdot)\psi^+$ to generate a quasi-infinitely divisible distribution?
- MAP-analogue to hypergeometric Lévy processes?
- Friendships from inverted WH-factorisations

$$\underbrace{\Psi(\theta)^{-1}}_{\text{"="$\mathcal{F}U$}(\theta)} = - \underbrace{\Psi^{+}(\theta)^{-1}}_{\text{"="$\mathcal{F}U$}^{+}(\theta)} \Delta_{\pi}^{-1} \underbrace{(\Psi^{-}(-\theta)^{\top})^{-1}}_{\text{"="$\mathcal{F}U$}^{-}(-\theta)^{\top}} \Delta_{\pi}$$

Thank you for your attention!

⁸A. Lindner, K. Pan, K. Sato (2018). On quasi-infinitely divisible distributions. *Trans. Amer. Math. Soc.*