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Some generalities on statistics fors SPDEs

• Let −Aϑ be a non-negative self-adjoint operator on L2(Λ) for some domain Λ ⊂ Rd and consider

the SPDE 
dX (t) = AϑX (t) dt + dW (t), t ∈ (0,T ],

X (0) = X0 ∈ L2(Λ),

X (t)|∂Λ = 0, t ∈ (0,T ],

where W is a cylindrical Brownian motion (that is, a random linear transformation

z 7→ (Wz(t))t∈[0,T ] =: (⟨W (t), z⟩)t∈[0,T ] on L2 s.t. for any z the rhs is a BM with variance ∥z∥2
L2

and E[⟨W (t), z⟩⟨W (s), z ′⟩] = t ∧ s⟨z , z ′⟩)

• for Sϑ(t) = exp(tAϑ) the mild solution process is defined by

X (t) = Sϑ(t)X0 +

∫ t

0

Sϑ(t − s) dW (s), t ∈ [0,T ],

which for d > 1 is typically only realized in a space of distributions

• the mild solution is a weak solution in the sense

⟨X (t), z⟩ = ⟨X0, z⟩+
∫ t

0

⟨X (s),Aϑz⟩ ds + ⟨W (t), z⟩, z ∈ D(Aϑ).
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• spectral observations: provided Aϑ has an orthonormal eigenbasis (ej ) that is independent of ϑ

(think Aϑ = ϑ∆), observe (j = 1, . . . , n, t ∈ [0,T ])

⟨X (t), ej ⟩ = ⟨X0, ej ⟩+
∫ t

0

⟨X (s),Aϑej ⟩ ds + ⟨W (t), ej ⟩ = ⟨X0, ej ⟩− λj (ϑ)

∫ t

0

⟨X (s), ej ⟩ ds + ⟨W (t), ej ⟩,

⇝ observations consist of n independent Ornstein–Uhlenbeck processes, asymptotics: n → ∞
• a more flexible approach is the local observation model1: for smooth K with ∥K∥L2 = 1, resolution

δ > 0 and measurement locations xi ∈ Λ define the point-spread function Kδ,i := δ−d/2K ( ·−xi
δ

)

• observations consist of (⟨X (t),Kδ,i ⟩)t∈[0,T ],i=1,...,n, where for Kδ,i ∈ D(Aϑ),

d⟨X (t),Kδ,i ⟩ = ⟨X (t),AϑKδ,i ⟩ dt + ⟨Kδ,i , dWt⟩

⇝ observations are generalized Itô processes (but not independent for i ̸= j), asymptotics: δ → 0, n

may be fixed or increase with δ−1

1Altmeyer, Reiß (2021). Nonparametric estimation for linear SPDEs from local measurements. Ann. Appl. Prob.
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A change point model for a stochastic heat equation

We consider the SPDE on Λ = (0, 1) given by
dX (t) = ∆ϑX (t) dt + dW (t), t ∈ (0,T ],

X (0) ≡ 0,

X (t)|{0,1} = 0, t ∈ (0,T ],

for a weighted Laplacian ∆ϑ := ∇ϑ∇, with discontinuous diffusivity

ϑ(x) = ϑ−1(0,τ)(x) + ϑ+1[τ,1)(x), x , τ ∈ (0, 1), 0 < ϑ− ∧ ϑ+.

0 1

ϑ− ϑ+

τ
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Classical heat kernel bounds for analytic semigroup (Sϑ(t) = exp(t∆ϑ))t∈[0,T ] implies that

X (t) =

∫ t

0

Sϑ(t − s) dWs , t ∈ [0,T ]

lives in L2((0, 1)) and we have

⟨X (t), z⟩ =
∫ t

0

⟨X (s),∆ϑz⟩ ds + ⟨W (t), z⟩, z ∈ D(∆ϑ) =
{
u ∈ H1

0 ((0, 1)) : ϑ∇u ∈ H1((0, 1))
}
.
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Estimation approach

• let K : R→ R be a smooth kernel with suppK ⊂ [−1/2, 1/2], ∥K∥L2 = 1 and for δ = n−1,

xi = (i − 1/2)δ (i ∈ {1, . . . , δ−1}), define Kδ,i = δ−1/2K (δ−1(x − xi ))

• local observations (Xδ,i (t))t∈[0,T ] = (⟨X (t),Kδ,i ⟩)t∈[0,T ] and (X∆
δ,i (t))t∈[0,T ] = (⟨X (t),∆Kδ,i ⟩)t∈[0,T ]

0 0 0
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• if i ̸= k0, then Xδ,i solves dXδ,i (t) = ϑ(xi )X
∆
δ,i (t) dt + dBδ,i (t) for independent BMs (Bδ,i , i ∈ [δ−1])

• we define a modified local log-likelihood by

ℓδ,i (ϑ−, ϑ+, ϑ◦, k) := ϑδ,i (k)

∫T

0

X∆
δ,i (t) dXδ,i (t) −

ϑδ,i (k)
2

2

∫T

0

X∆
δ,i (t)

2 dt, ϑδ,i (k) :=


ϑ−, i < k,

ϑ◦, i = k

ϑ+, i > k
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0 0 0
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• CUSUM-approach: (ϑ̂−, ϑ̂+, ϑ̂◦, τ̂) := (ϑ̂−, ϑ̂+, ϑ̂◦, k̂δ), where

(ϑ̂−, ϑ̂+, ϑ̂◦, k̂) := argmax
(ϑ−,ϑ+,ϑ◦,k)

∑
i∈[δ−1]

ℓδ,i (ϑ−, ϑ+, ϑ◦, k)

= argmin
(ϑ−,ϑ+,ϑ◦,k)

{1

2

δ−1∑
i=1

(ϑδ,i (k) − ϑ0
δ,i )

2Iδ,i −
δ−1∑
i=1

(ϑδ,i (k) − ϑ0
δ,i )Mδ,i − ϑδ,k0(k)Rδ,k0(ϑ

0
◦)
}
,

for

Mδ,i :=

∫T

0

X∆
δ,i (t) dBδ,i (t), Iδ,i :=

∫T

0

X∆
δ,i (t)

2 dt,

and Rδ,k0(ϑ
0
◦) is an error term resulting from Kδ,k0 /∈ D(∆ϑ) in general 6/13



Basic estimates

Lemma (Reiß, Strauch and T., 2023+)

• For any i ∈ [δ−1] \ {k0},

E[Iδ,i ] =
T

2ϑ(xi )
∥K ′∥2L2δ

−2 +𝒪(1),

and, moreover, E[Iδ,k0 ] ∼ δ−2;

• for any vector α ∈ Rn s.t. αk0 = 0,

Var
( δ−1∑

i=1

αi Iδ,i

)
⩽

T

2ϑ3 δ
−2∥α∥2ℓ2∥K

′∥2L2 ;

• For η := ϑ0
+ − ϑ0

−,

E[|Rδ,k0(ϑ◦)|] ≲ δ−2, Var(Rδ,k0(ϑ◦)) ≲ δ−2,

and ∃ϑ0
◦ s.t. |E[Rδ,k0(ϑ

0
◦)]| ⩽ δ−1.

7/13



Concentration result

Main observation:
∑δ−1

i=1 αi (Iδ,i − E[Iδ,i ]) belongs to second Wiener chaos for an appropriate isonormal

Gaussian process associated to (X∆
i (t))t∈[0,T ],i∈[δ−1] ⇝ verify conditions for Bernstein-type

concentration inequality from Nourdin and Viens (2009)2

Proposition (Reiß, Strauch and T., 2023+)

Let α ∈ Rn
+ \ {0} s.t. αk0 = 0. Then, for any z > 0, we have

P
(∣∣∣ n∑

i=1

αi (Iδ,i − E[Iδ,i ])
∣∣∣ ⩾ z

)
⩽ 2 exp

(
−

ϑ2

4∥α∥∞
z2

z +
∑n

i=1 αiE[Iδ,i ]

)
.

2I. Nourdin and F.G. Viens (2009). Density formula and concentration inequalities with Malliavin calculus. Electron. J. Prob.,

14:no. 78, 2287–2309.
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Rate of convergence

Define the jump height η := ϑ0
+ − ϑ0

−.

Theorem (Reiß, Strauch and T., 2023+)

Suppose that χ0(δ) −→
δ→0

χ∗ and that |η| ⩾ η for all δ ∈ 1/N. Then,

τ̂− τ0 = 𝒪P(δ) and ϑ̂± − ϑ0
± = 𝒪P(δ

3/2).

• the estimation rate for τ0 is the same as in classical discrete change point models

• the estimation rate for ϑ0
± is the same as the minimax optimal rate3 for parametric estimation

from multiple local measurements in the model Aϑ = ϑ∆

3Altmeyer, Tiepner, Wahl (2023+) Optimal parameter estimation for linear SPDEs from multiple measurements
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Limit theorem for vanishing jump height

• for the previous consistency result it was crucial that the jump height η does not vanish

• assume now that η −→
δ→0

0 and that the nuisance parameters ϑ0
± = ϑ0

±(δ) are known

• CUSUM estimator: τ̂ = k̂δ, where

k̂ := argmax
k=1,...,δ−1

k∑
i=1

(
ϑ0
−

∫T

0

X∆
δ,i (t) dXδ,i (t) −

(ϑ0
−)

2

2

∫T

0

X∆
δ,i (t)

2 dt
)

+

δ−1∑
i=k+1

(
ϑ0
+

∫T

0

X∆
δ,i (t) dXδ,i (t) −

(ϑ0
+)

2

2

∫T

0

X∆
δ,i (t)

2 dt
)

Theorem (Reiß, Strauch and T., 2023+)

Assume η = o(δ) and δ3/2 = o(η). Then, for a two-sided Brownian motion (B↔(h), h ∈ R), we have

η2

δ3
T∥K ′∥2

L2

2ϑ∗ (τ̂− τ)
d−→ argmin

h∈R

{
B↔(h) +

|h|

2

}
, as δ → 0.
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Convergence result in the multivariate case

Theorem (Tiepner and T., 2024+)

Let (ϑ̂−, ϑ̂+, τ̂) be the CUSUM estimator of (ϑ0
−, ϑ

0
+, τ

0), designed under the assumption that we

know two sets Θ± ⊂ [ϑ, ϑ] that contain ϑ0
± and are η-separated, η > 0. If τ0 is β-Hölder continuous

on [0, 1]d−1, then

E
[
∥τ̂− τ0∥L1([0,1]d−1)

]
≲ δβ.

Given the necessary identifiability assumption ∥τ0∥L1([0,1]d−1) ∈ (0, 1), (ϑ̂−, ϑ̂+) is a consistent

estimator of (ϑ0
−, ϑ

0
+).
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estimator of (ϑ0
−, ϑ

0
+).

In terms of the number of measurement location N = δ−d , the change profile estimation rate is given

by

N−β/d ⋚ N
−β

2β+d−1︸ ︷︷ ︸
nonparametric rate

, β ⋛ 1/2.

This is the same rate that is observed in image reconstruction problems with regular design.
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Summary

• for a stochastic heat equation with piecewise constant diffusivity, we construct a simultaneous

M-estimator for the conductivities ϑ0
± and the change point τ0 from multiple local measurements

• in case of non-vanishing jump height, we show that

τ̂− τ0 = 𝒪P(δ) and ϑ̂± − ϑ0
± = 𝒪P(δ

3/2)

• in case of vanishing jump height and known parameters ϑ0
± we construct a change point estimator

τ̂ obeying the limit theorem

η2

δ3
T∥K ′∥2

L2

2ϑ∗ (τ̂− τ0)
d−→ argmin

h∈R

{
B↔(h) +

|h|

2

}
, as δ → 0,

provided η = o(δ) and δ3/2 = o(η)

• in the multivariate change interface estimation problem we construct an estimator that converges

at rate δβ under β-Hölder smoothness assumptions

Thank you for your attention!
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