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Some generalities on statistics fors SPDEs

e Let —Ay be a non-negative self-adjoint operator on L?(A) for some domain A C RY and consider

the SPDE
dX(t) = AgX(t)dt +dW(t), te (0, Tl

X(0) = X € L2(A),
X(t)lan =0, te (0, Tl
where W is a cylindrical Brownian motion (that is, a random linear transformation

z = (W, ()eeo, 11 = ((W(t), 2))ecio,r) on L? s.t. for any z the rhs is a BM with variance | z||?,
and E{W (t), z)(W(s), 2)] = t As(z, 2))
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which for d > 1 is typically only realized in a space of distributions
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z = (W, ()eeo, 11 = ((W(t), 2))ecio,r) on L? s.t. for any z the rhs is a BM with variance | z||?,
and E[(W(t), z)(W(s), 2')] = t A's(z,Z'))

e for Sy(t) = exp(tAs) the mild solution process is defined by
t

X(t) = S@(t)Xo-i-J' Se(t—s)dW(s), tel0, Tl
0

which for d > 1 is typically only realized in a space of distributions

e the mild solution is a weak solution in the sense
t

(X(t),z) = (Xo, 2) +JO<X(5),A32> ds+ (W(t),z), ze€ D(Ap).
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e spectral observations: provided Ay has an orthonormal eigenbasis (e;) that is independent of &
(think Ay =9A), observe (j=1,...,n,t € [0, T])

t t

(X(s), Ase)ds + (W(1), &) = (Xo, &) —Ma)J (X(s), &) ds+ (W(1), &),

X(0). ) = (X, &)+ | 0

0

! Altmeyer, ReiB (2021). Nonparametric estimation for linear SPDEs from local measurements. Ann. Appl. Prob.
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e observations consist of ((X(t), Ks.;))te0,71,i=1....n, Where for Ks; € D(As),

d<X(t), Kg’,'> S <X(t), A3K5Vi> dt + <K5,iv th>

~~ observations are generalized I1td processes (but not independent for i # j), asymptotics: & — 0, n
may be fixed or increase with 51

! Altmeyer, ReiB (2021). Nonparametric estimation for linear SPDEs from local measurements. Ann. Appl. Prob.
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A change point model for a stochastic heat equation

We consider the SPDE on A = (0,1) given by

dX(t) = A@X(t)dt-i-dW(t), te (0, T],

X(0) =
X(

for a weighted Laplacian Ay == V3V, with discontinuous diffusivity

t)|{o1}70 te (0, Tl

B(x) =0T (o (x) +¥:Try(x), x,T1€(0,1),0<d_ANAD,.

I 9,
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A change point model for a stochastic heat equation

We consider the SPDE on A = (0,1) given by
dX(t) =Ae X(t)dt +dW(t), te (0, T],
X(0) =0,
X(t)lo1y =0, te (0, 7],
for a weighted Laplacian Ay == V3V, with discontinuous diffusivity
BH(x) =_To)(x) +9:1ry(x), x,1€(0,1),0<d_AD,.
d St
Il /
0 T 1

Classical heat kernel bounds for analytic semigroup (Sp(t) = exp(tAy))icio, 7] implies that

X(t) :J Sy(t—s)dW,, tel0, Tl
0
lives in L2((0,1)) and we have

(X(t), z) =L(X(s],Aﬁz)ds+ (W(t),z), ze D(Ay)= {u € H;((0,1)):9Vu € Hl((O,l))}.
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Estimation approach

e let K: R — R be a smooth kernel with supp K C [~1/2,1/2], |K|,;2 =1 and for 6 = n1,
x=(—1/2)5 (i ef1,..., 571}), define K;; = S12K(57 (x — x;))

e local observations (Xs;(t))eco, 71 = ((X(t), Ks.i))eco, 71 and (XE;(1))eco, 1) = (X (1), AKs,))eeio. )
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e let K: R — R be a smooth kernel with supp K C [-1/2,1/2], ||K||;2 =1 and for § = n71,
x;=(i—1/2)6 (i €{1,...,571}), define Ks; = 6 2K (67} (x — x;))
e local observations (X ;(t ))te[o,TJ = ((X(t), Ks,i))eeio.1 and (XE(t))eero. 1 = ((X(t), AKs.i))eero, 7

[(ko = 1)0, ky0]
o if i # ko, then Xj; solves dX; ;(t) = S(X;)Xéyi(t) dt +dBs,;(t) for independent BMs (Bs ;,i € [671])

e we define a modified local log-likelihood by

_, i<k

T A B5,i(K)2 [T a2 T

a0 84,90, ) = 00,(K) | X0 Xs(0) = 25 | XB (02 de, Dai(k) =0, i=k
0 0

9, i>k
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e modified local log-likelihood:

. - 0., i<k,
o A 5,i(k) A 2 — .
(’,5,,-(19,,19%1%, k) = Sé,i(k) Xzs,i(t) dX«S,i(t) - T Xa,i(t) dt, Bé,i(k) =<V, =k,
0 ° 8., i>k
e CUSUM-approach: (§,,§+,1§0,?) = (§,,§+,§O,E6), where
(5,,§+,§O,E) = argmax Z Csi(D_,9,,9, k)
(B,,8+,80,k) I'G[éfl]
1 51 51
= argmin — 19,-/(7190,-2/,-7 S;kfﬁoi/\/l,-f{) k)R 82 ,
w,,i,a@,k){z;( 5000 = 98 = 3 (B6,(k) = 88,)Ms. = Do (K)Rese )}

for - =
M ; ::J X (t)dBsi(t), s ::J X8 (t)* dt,
0 0

and R 4, (32) is an error term resulting from Ks 4, ¢ D(As) in general Qe



Basic estimates

Lemma (ReiB, Strauch and T., 2023+)

e Forany i € [0\ {ko},

Ells, /] = 28 HKHL25 +0(1),

and, moreover, E[l5 k] ~ 82;

e for any vector o € R" s.t. oy, =0,

51
T
Vaf(Z Oci/zs,i> S 7530 2llocli 1K (172
i=1 -

e Form:=9% —9°,
ElRs, k(D) S 572, Var(Rs 1, (D)) S 572,

~

and 399 s.t. [E[Rs 4, (92)]] < 572
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Concentration result

Main observation: Zf:ll o;(ls; — Ells;]) belongs to second Wiener chaos for an appropriate isonormal
Gaussian process associated to (X (t))¢cpo,11.icis—1; ~ Vverify conditions for Bernstein-type
concentration inequality from Nourdin and Viens (2009)?

Proposition (ReiB, Strauch and T., 2023+)

Let @ € R} \ {0} s.t. ax, = 0. Then, for any z > 0, we have

z 9? z
[FD’ oc,-l,-f[El,-}>z < 2ex (7 = ; )
( ; (s, = Ells.l) ) P\ ™ 4ol z+ 21y il ]

2. Nourdin and F.G. Viens (2009). Density formula and concentration inequalities with Malliavin calculus. Electron. J. Prob.,
14:no. 78, 2287-23009.
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Rate of convergence

Define the jump height 1 := 9% —9°.

Theorem (ReiB, Strauch and T., 2023+)
Suppose that x°(8) P x* and that m| > for all 8 € 1/N. Then,
- )

T—1=0p(5) and Vi —9%L = Op(6¥?).

e the estimation rate for T° is the same as in classical discrete change point models

e the estimation rate for 9%, is the same as the minimax optimal rate® for parametric estimation
from multiple local measurements in the model Ay =dA

3Altmeyer, Tiepner, Wahl (20234-) Optimal parameter estimation for linear SPDEs from multiple measurements
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Limit theorem for vanishing jump height

e for the previous consistency result it was crucial that the jump height 1 does not vanish

e assume now that n n 0 and that the nuisance parameters 9% =99 (8) are known
—

e CUSUM estimator: T = Eé, where

Theorem (ReiB, Strauch and T., 2023+)
Assume 11 = 0(8) and %2 = o(n). Then, for a two-sided Brownian motion (B**(h), h € R), we have
2T|K'||2 h
2—3%(’?7’@i>ar%€rnr;in{BH(h)+%}, as & — 0.
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&Xt < A-ogxt cl{‘ *olw ) \SVO(X\ _ (19:3 4_/&-(0* ‘E’: j]_&(x\ | X 6~/_\3L9(/11°K
Ag oo = V-2V = Z O C@D(D‘m)
DA DA DAL - { (cia) e [M“f

o A e B H
) / T, - / T,
\J \\J
® A - - -
A QS{-\N\Q_ L)gs{‘ neceuaN\ e
§ meatarement bealtos p canshamt agoxamakion T
loc meas: Y, Ug,D <><H\¢/-\\»(s,;‘) basedl o CALSU M afvouda

opwv  Hime lewa b\Tl
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Convergence result in the multivariate case

Theorem (Tiepner and T., 2024+)

Let (9_,9.,7) be the CUSUM estimator of (92,99, 1), designed under the assumption that we
know two sets @, C [9,9] that contain 191 and are H—separated, n > 0. If ©° is B-Holder continuous
on [0,1]9°1, then

[E|:||:['\— TOHLl([O'l]d—l)] 5 6[5

Given the necessary identifiability assumption [ T°|;1(j017¢—1) € (0, 1), (9_,9.) is a consistent
estimator of (9%, 99).
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Theorem (Tiepner and T., 2024+)

Let (9_,9.,7) be the CUSUM estimator of (92,99, 1°), designed under the assumption that we
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on [0,1]971, then
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Given the necessary identifiability assumption ||T°|[,1(;047¢9—1) € (0, 1), (9_,9,) is a consistent
estimator of (9%,99%).

In terms of the number of measurement location N = 59, the change profile estimation rate is given
by

/\/*ﬁ/d;/\/zﬁu'f[3 T [5%]_/2_

nonparametric rate

This is the same rate that is observed in image reconstruction problems with regular design.
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e for a stochastic heat equation with piecewise constant diffusivity, we construct a simultaneous
M-estimator for the conductivities 9% and the change point t° from multiple local measurements
e in case of non-vanishing jump height, we show that

T =0p(5) and Vs —9% = Op(6¥?)

e in case of vanishing jump height and known parameters 9% we construct a change point estimator
T obeying the limit theorem

2TIK'|1Z a5
mn 12 (~ 0 d 0 {
— = (T— — min< B (h) +
5 2o (T—1") ar%ERm (h)

||

7} as & — 0,

provided 1 = 0(8) and §%2 = o(n)
e in the multivariate change interface estimation problem we construct an estimator that converges
at rate 6P under B-Hoélder smoothness assumptions
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Thank you for your attention!
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