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Denoising diffusion models

• provide an iterative generative algorithm to create new samples that approximately match the
target distribution p0, given a finite number of samples corresponding to an unknown p0

• general idea: find a stochastic process that perturbs p0 to a new distribution pT such that

1) pT or a good approximation thereof is easy to sample from, and
2) the perturbation is reversible in the sense that we know how to simulate the time-reversed

process

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. ICLR.
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Denoising Diffusion Models

• for some fixed time T > 0 consider the forward model

dXt = b(t ,Xt ) dt + 𝜎(t ,Xt ) dWt , t ∈ [0, T ],X0 ∼ p0

• under sufficient regularity conditions, the forward model has a solution X = (Xt )t∈[0,T ] with
marginal densities pt (x) = ∫ p0,t (y , x) p0(dy) such that the time reversal ⃗X t = XT−t solves

d ⃗X t = −b(T − t , ⃗X t ) dt + 𝜎(T − t , ⃗X t ) dW t , t ∈ [0, T ], ⃗X 0 ∼ pT ,

where

bi(t , x) = bi(t , x) −
1

pt (x)

d

∑
j,k=1

𝜕
𝜕xj

(pt (x)𝜎ik (t , x)𝜎jk (t , x))

= bi(t , x) − (∇ ⋅ Σ(t , x))i − (∇ log pt (x))i , i = 1, … , d , Σ = 𝜎𝜎⊤
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⇝ time-reversed process solves a time-inhomogeneous SDE, now with drift −b(T − ⋅, ⋅) involving the
score ∇ log pt , which depends on the unknown data distribution p0

⇝ score needs to be estimated from the data
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Generative process

• given data (X i
0)i∈[n]

iid∼ p0 define the denoising score estimator

𝔰̂ ∈ argmin
s∈𝒮

1
n

n

∑
i=1

𝔼X i
0
[ ∫

T

T
‖s(t ,Xt ) − ∇2 log p0,t (X0,Xt )‖2 dt],

• On [0, T − T ], simulate

dYt = (−b(T−t ,Yt )+∇⋅Σ(T−t ,Yt )+Σ(T−t ,Yt )𝔰̂(T−t ,Yt )) dt+𝜎(T−t ,Yt ) dWt , ℙY0(dy) ≈ pT (y) dy

• Output: YT−T
d
≈ ⃗XT−T = XT

d
≈ X0

Basic observations

• time reversal at deterministic time T forces the backward process to be time-inhomogeneous

• if p0 has low-dimensional support ℳ, for small t and x close to ℳ, ∇ log pt (x) is approximately
orthogonal toℳ (Stanczuk et al., 2024)1

• algorithm is not adaptive to the noise level in the data

1Stanczuk et al. (2024). Your diffusion model secretely knows the dimension of the data manifold. ICML.
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h-transforms and time reversal

h-transform
For a possibly killed, homogeneous strong Markov process X with state space S , let h be an excessive
function, that is

𝔼x [h(Xt )] ≤ h(x) and lim
t→0

𝔼x [h(Xt )] = h(x).

Then,

Ph
t f (x) = 𝔼x [

h(Xt )
h(x)

f (Xt )1{Xt∈S}]1(0,∞)(h(x)), f ∈ ℬb(ℝd ),

defines a sub-Markov semigroup. The corresponding Markov process X h is strong Markov and is
called h-transform of X .

• suppose that X is a continuous and self-dual Feller process (i.e., its generator satisfies A = A∗)

• if X h has a finite killing time 𝜁, then the time-reversed process ⃗X h
t = X h

𝜁−t is homogeneous, strong

Markov and is a ⃗h-transform of X .
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h-transforming a killed diffusion

• consider a symmetric diffusion process

dXt = b(Xt ) dt + 𝜎(Xt ) dWt

with invariant measure m and let Z be its version killed at an independent exponential time with
parameter r > 0

• as an excessive function for Z use

h(x) = ∫Gr (x , y) 𝜅(dy)

for the Green kernel Gr (x , y) = ∫∞0 e−rtpt (x , y) dy and a representing measure 𝜅
• 𝜅(dy) = r dy ⇝ h = 1 and Z h = Z
• 𝜅(dy) = 1

Gr (x0,y)
𝛽(dy) ⇝ Z conditioned to have distribution 𝛽 before killing if started in x0

• Z is a killed Brownian motion and 𝜅(dy) = 𝜎R(dy) for the surface measure 𝜎R of an R-sphere 𝕊d−1(R) ⇝
Z h is killed at last exit from 𝕊d−1(R)
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A time-homogeneous generative process
Proposition

1. Z h is an Itô-diffusion with dynamics

dZ h
t = (b(Z h

t ) + Σ(Xt )∇ log h(Xt )) dt + 𝜎(Z h
t ) dWt

outside supp 𝜅 and its distribution at the lifetime is given by

ℙx (Z h
𝜁− ∈ dy) =

Gr (x , y)
h(x)

𝜅(dy)

2. Let 𝛼 = ℙZ
h
0 . Then ⃗Z h

t is an ⃗h-transform of Z with initial distribution ℙ𝛼(Z h
𝜁− ∈ dy) and

⃗h(x) ≔ ∫
Gr (x , y)
h(y)

𝛼(dy).

In particular, ⃗Z h has dynamics

d ⃗Z h
t = (b( ⃗Z h

t ) + Σ( ⃗Z h
t )∇ log ⃗h( ⃗Z h

t )) dt + 𝜎( ⃗Z h
t ) dW t ,

outside supp 𝛼 ≕ ℳ and ℙ𝛼(
⃗Z h
𝜁− ∈ dy ∣ ⃗Z h

0 = x) = Gr (x ,y)
⃗h(x)h(y)

𝛼(dy) for ℙ𝛼(Z h
𝜁− ∈ ⋅)-a.e. x .
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A time-homogeneous generative process

Idealised algorithm:

1. Initialise Z
⃗h

0 ∼ ̃𝛽 ≈ ℙ𝛼(Z h
𝜁−)

• for ergodic forward process with stationary distribution 𝜇 and small exponential killing rate r > 0, choose
̃𝛽 = 𝜇 [↭ ergodic diffusion model]

• for exponentially killed BM with small killing rate r > 0, choose ̃𝛽 = Laplace(0, (2r)−1/2𝕀d ) [↭ variance
exploding diffusion model]

• for 𝜅(dy) = 1
Gr (x0,y)

𝛿z , choose ̃𝛽 = 𝛿z

2. Simulate diffusion Z
⃗h until killing time and output Z

⃗h
𝜁−

Requirements for implementation

1. learn ∇ log ⃗h (only a function in space – no time component);

2. learn killing time 𝜁 of ⃗Z h
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Learning to kill

Polarity hypothesis

Assume that ℳ = supp 𝛼 is polar for X , i.e., for any x ∈ ℝd , ℙx (inf{t > 0 ∶ Xt ∈ ℳ} < ∞) = 0.

Theorem

Under the polarity hypothesis, the backward process ⃗Z h is killed at first entrance into ℳ.

Possible strategies to estimate a 𝛿-fatteningℳ𝛿 = {x ∶ dist(x ,ℳ) ≤ 𝛿} given data X 1, … ,X n iid∼ 𝛼 and
an estimator 𝔰̂ of 𝔰 ≔ ∇ log ⃗h:

• plug-in approach: estimate ℳ𝛿 directly or indirectly by setting ℳ̂𝛿 = (ℳ̂)𝛿; then set
̂𝜁 ≔ inf{t ≥ 0 ∶ Z 𝔰̂

t ∈ ℳ̂𝛿}
• use explosive behaviour of 𝔰 as x → ℳ:

Theorem
Suppose that ℳ is polar for X and Y solving dYt = 𝜎(Yt ) dBt . Then, it a.s. holds that

𝜁 = inf {t ≥ 0 ∶ sup
s≤t

|𝔰( ⃗Z h
s )| = ∞} = inf {t ≥ 0 ∶ ‖𝔰( ⃗Z h)‖L2([0,t]) = ∞}.
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Denoising score matching

• for ℙ𝛼(Z h
𝜁− ∈ ⋅)-a.e. x

𝔰(x) = ∇ log ⃗h(x) = 1
⃗h(x)

∫ ∇xGr (x , y)
1

h(y)
𝛼(dy) = ∫∇x logGr (x , y)

Gr (x , y)
⃗h(x)h(y)

𝛼(dy)

= 𝔼[∇x logGr (x ,Z
⃗h

𝜁−) ∣ Z
⃗h

0 = x]

= 𝔼𝛼[∇x logGr (x ,Z h
0 ) ∣ Z h

𝜁− = x]

• this implies that on ℝd ∖ℳ𝛿, 𝔰 agrees ℙ𝛼(Z h
𝜁− ∈ ⋅)-a.e. with the minimiser of

ℬ(ℝd ; ℝd ) ∋ s ↦ 𝔼𝛼[‖s(Z h
𝜁−) − ∇ logGr (Z h

0 ,Z h
𝜁−)‖

21{‖Z h
𝜁−−Z

h
0 ‖>𝛿}

]

• note that if Z h = Z , then 𝜁 ∼ Exp(r) independent of Z , Z𝜁− = X𝜁 has full support and we have

𝔼𝛼[‖s(Z h
𝜁−)−∇ logGr (Z h

0 ,Z h
𝜁−)‖

21{‖Z h
𝜁−−Z

h
0 ‖>𝛿}

] = r𝔼𝛼[ ∫
𝜁

0
‖s(Z h

t )−∇ logGr (Z h
0 ,Z h

t )‖
21{‖Z h

t −Z h
0 ‖>𝛿}

dt]
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Projection learning

• we don’t have to start the backward process approximately in ℙ𝛼(Z h
𝜁− ∈ dy): it will always be killed

on the data support ℳ and different initialisations will yield different output distributions
supported on ℳ⇝ natural conditioning

• a natural question is therefore what happens if we don’t start the generative process from pure
noise but something more informative, say a masked or moderately noised picture

• it turns out that the natural conditioning aspect entails a blessing of dimensionality
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Projection learning

Let Z be an exponentially killed Brownian motion. Then,

⃗h(x) = ∫Gr (x , y) 𝛼(dy), Gr (x , y) = 2(2𝜋)−d/2r( √2r
|x − y |

)
d−2
2 K d−2

2
( √2r
|x − y |

).

For large d ,

∇ log ⃗h(x) ≈ d
∫ x−y
|x−y |d 𝛼(dy)

∫|x − y |2−d 𝛼(dy)
and thus, if there is a unique projection x∗ ∈ argminy∈ℳ|x − y | of x onto ℳ, then

∇ log ⃗h(x) ≈ d
x∗ − x
|x∗ − x |2

= d
sign(x∗ − x)
|x∗ − x |

Theorem

Let 𝛿, 𝜀 > 0 and fix an observation x ∈ ℝd . If 𝛼(B(x , r)) > 𝜀 for some ball B(x , r) with radius r > 0
around y , then

ℙ(Z ⃗h
𝜁− ∈ ℳ ∩ B(x , (1 + 𝛿)r) ∣ Z ⃗h

0 = x) ≥ 1 − 1
𝜀
(1 + 𝛿) 2−d .

11/12



Projection learning

Consider now estimators 𝔰̂n , an independent Brownian motionW and let Ẑ 𝔰̂n be the process solving

dẐ 𝔰̂n
t = 𝔰̂n(Ẑ

𝔰̂n
t )1{t≤ ̂𝜁 } dt + 1{t≤ ̃𝜁 } dWt , ̂𝜁 ≔ inf {t ≥ 0 ∶ ‖Ẑ 𝔰̂n‖L2[0,t] > M}.

Theorem

Fix an observation x ∈ ℝd . Suppose that

• for any ̃𝛿 , 𝛿 , 𝜀 > 0 it holds for sufficiently large n that

ℙ(‖(𝔰̂n(Z
⃗h) − 𝔰(Z ⃗h))1{Z ⃗h∉ℳ ̃𝛿}

‖
L2(𝜁 )

> 𝛿 |Z ⃗h
0 = x) < 𝜀

• for any n ∈ ℕ and ̃𝛿 > 0, the function 𝔰̂n is L ̃𝛿-Lipschitz onℳc
̃𝛿

Let 𝛿, 𝜀, ̃𝛿 , ̃𝜀 > 0. If 𝛼(B(x , r)) > 𝜀, then, for sufficiently large M > 0 and n ∈ ℕ,

ℙ(Ẑ 𝔰̂n
̂𝜁
∈ ℳ ̃𝛿 ∩ B(x , (1 + 𝛿)r) | Ẑ 𝔰̂n

0 = x) > 1 − 1
𝜀
(1 + 𝛿) 2−d − ̃𝜀.
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Thank you for your attention!
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