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Denoising diffusion models

- provide an iterative generative algorithm to create new samples that approximately match the
target distribution py, given a finite number of samples corresponding to an unknown pg

« general idea: find a stochastic process that perturbs p, to a new distribution pr such that

1) pr or a good approximation thereof is easy to sample from, and
2) the perturbation is reversible in the sense that we know how to simulate the time-reversed

Forward SDE (data — nmse)
‘llll’———————————— dx = f(x, t)dt + g(t) ——————————)><::::::>
score  function
dx = [f(x,t) — ¢* ()V logp,(xdt+g(t @

Reverse SDE (noise — data)

process

ont

Source: Song et al. (2021). Score based generative modeling through stochastic differential equations. /CLR.
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Denoising Diffusion Models

« for some fixed time T > 0 consider the forward model

dX; = b(t, X)) dt + o(t, X)) dW;, t€[0,T], Xy ~ po
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Denoising Diffusion Models

« for some fixed time T > 0 consider the forward model
dXt b(t Xt)dt + U(t Xt)th, te [0, T],XO ~

« under sufficient regularity conditions, the forward model has a solution X = (X;);[o, 7] With

marginal densities p;(x) = [ po ¢(y, x) po(dy) such that the time reversal )?t = X7_; solves
dX; = —B(T — t, Xp) dt + o(T — t, X;) dW,, t€[0,T],Xo ~ pr,
where
d
bi(t,x) = bi(t,x) - ( j 2 Z ax; (P10 003(6,))
pelx

= bi(t,x)— (V- Z(t, x)i—Vlogpi(x));, i=1,..,d,X=00"
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Denoising Diffusion Models

« for some fixed time T > 0 consider the forward model
dX; = b(t, Xp) dt + o(t, X)) dW;, te€][0,T], Xy ~
« under sufficient regularity conditions, the forward model has a solution X = (X¢);e[o,7] With
marginal densities p;(x) = [ py ¢(y, x) po(dy) such that the time reversal )?t = X7_; solves
dX; = —b(T — t, X dt + o(T — £, X)) dW,, t€[0,T], X ~ pr,

where

d
bi(t, x) = bi(t, x) — Z = — (pe()o(t, X)oj(t, x))

t( )jk 1
= bi(t,x) — (V-3(t,x)); — (Vlog p;(x));, i=1,...,d, % =00"

~ time-reversed process solves a time-inhomogeneous SDE, now with drift —b(T — -,-) involving the
score V log ps, which depends on the unknown data distribution p,

~» score needs to be estimated from the data
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Generative process
. given data (Xé)ie[n] iid po define the denoising score estimator

n T

A 1

8 € argmin - Z ]EXO;[ JT Is(t, X;) — V5 log po (X0, Xp)I? dt],
= T

se8

« On [0, T — T], simulate

dYy = (=b(T=t, YO+VE(T—t, Y)+E(T—t, Y)3(T—t, Yy)) dt+a(T—t, Y;) dW;, PYo(dy) = pr(y)dy

d < d
« Output: YT*I =~ XT*I =Xr =Xy

Stanczuk et al. (2024). Your diffusion model secretely knows the dimension of the data manifold. ICML.
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Generative process

. given data (Xé)ie[n] iid po define the denoising score estimator

n T

A 1

8 € argmin — Z ]EXO;[J Is(t, X;) — V5 log po (X0, Xp)I? dt],
se§ i3 T

« On [0, T — T], simulate

dYy = (=b(T—t, Y)+V-E(T—t, Y)+(T—t, Y)3(T—t, V) dt+a(T—t, Y) dW,, PYo(dy) = pr(y)dy
d < d
. OUtpUt! YT*I ~ XT*I = XI ~ XO

Basic observations

- time reversal at deterministic time T forces the backward process to be time-inhomogeneous

« if py has low-dimensional support ., for small t and x close to ., V log p;(x) is approximately
orthogonal to ./ (Stanczuk et al., 2024)’

« algorithm is not adaptive to the noise level in the data

Stanczuk et al. (2024). Your diffusion model secretely knows the dimension of the data manifold. ICML.

3/12



h-transforms and time reversal

h-transform
For a possibly killed, homogeneous strong Markov process X with state space S, let h be an excessive

function, that is
E,[h(X)] < h(x) and }mﬁx[h(Xt)] = h(x).

Then,
PEFG0 = B[R e f(xt)nxtes}]uom)(h(x» f € By®,

defines a sub-Markov semigroup. The corresponding Markov process X" is strong Markov and is
called h-transform of X.

« suppose that X is a continuous and self-dual Feller process (i.e., its generator satisfies A = A¥)

« if X" has a finite killing time ¢, then the time-reversed process X} = Xéf’_t is homogeneous, strong

Markov and is a A-transform of X.
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h-transforming a killed diffusion

« consider a symmetric diffusion process

with invariant measure m and let Z be its version killed at an independent exponential time with
parameter r > 0

« as an excessive function for Z use
00 = [ 6.0y x(ay)

for the Green kernel G.(x,y) = f(;)o e " pi(x, y) dy and a representing measure

«k(dy)=rdywh=1and 2" =7
« k(dy) = ﬁ p(dy) ~» Z conditioned to have distribution f before killing if started in x,
r(X0,,

« Zis a killed Brownian motion and k(dy) = ogr(dy) for the surface measure oy of an R-sphere SA=T1(R) ~»
Zhis killed at last exit from $97"(R)
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A time-homogeneous generative process

Proposition
1. Z"is an Ito-diffusion with dynamics
dzl = (b(Zf) + 2(Xp)V log h(Xp)) dt + o(Z{) dW;
outside supp k and its distribution at the lifetime is given by

G, (x, Y)
h(x)

2. Leta = PZ. Then Zlis an h-transform of Z with initial distribution ]Pa(ZgL e dy) and

A e G (x,y)
h(x) = J %) a(dy).

P,(Z! edy) =

x(dy)

In particular, Z" has dynamics
h_ (p(7h h (7h By TV
dz{ = (b(Z{") + 2(Z;")V log h(Z]")) dt + o(Z;") dW,

outside supp & =: ./ and lPa(Zf', edy | Zoh =) = LX’y)oz(dy) for lPa(Zh_ € )-a.e. x.

hGOh(y) o1



A time-homogeneous generative process

Idealised algorithm:

1. Initialise Zg' ~ f = Po(Z}")
« for ergodic forward process with stationary distribution yz and small exponential killing rate r > 0, choose
f=p [« ergodic diffusion model]
« for exponentially killed BM with small killing rate r > 0, choose ﬂN = Laplace(0, (2r)’1/2]Id) [«» variance
exploding diffusion model]
« fork(dy) = G;(SZ, choose f = 6,
+(X0.y)

2. Simulate diffusion Z" until killing time and output Zgh_
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A time-homogeneous generative process

Idealised algorithm:

1. Initialise Zg' ~ f = Po(Z}")
« for ergodic forward process with stationary distribution yz and small exponential killing rate r > 0, choose
f=p [« ergodic diffusion model]
« for exponentially killed BM with small killing rate r > 0, choose ﬂN = Laplace(0, (2r)’1/2]Id) [«» variance
exploding diffusion model]
« fork(dy) = G;(SZ, choose f = 6,
+(X0.y)

2. Simulate diffusion Z" until killing time and output Zéf’_

Requirements for implementation

1. learn Vlog h (only a function in space — no time component);
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A time-homogeneous generative process

Idealised algorithm:

1. Initialise Zg' ~ f = Po(Z}")
« for ergodic forward process with stationary distribution yz and small exponential killing rate r > 0, choose
f=p [« ergodic diffusion model]
« for exponentially killed BM with small killing rate r > 0, choose ﬂN = Laplace(0, (2r)’1/2]Id) [«» variance
exploding diffusion model]
« fork(dy) = G;(SZ, choose f = 6,
+(X0.y)

2. Simulate diffusion Z" until killing time and output Zéf’_

Requirements for implementation

1. learn Vlog h (only a function in space — no time component);

2. learn killing time ¢ of Z"
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Learning to kill

Polarity hypothesis
Assume that / = supp ais polar for X, i.e., for any x € R, P, (inf{t > 0 : X, € M} < 00) = 0.
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Learning to kill

Polarity hypothesis
Assume that / = supp ais polar for X, i.e., for any x € R, P, (inf{t > 0 : X, € M} < 00) = 0.

Theorem

Under the polarity hypothesis, the backward process Z" is killed at first entrance into /.
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Learning to kill

Polarity hypothesis
Assume that / = supp ais polar for X, i.e., for any x € R, P, (inf{t > 0 : X, € M} < 00) = 0.

Theorem

Under the polarity hypothesis, the backward process Z" is killed at first entrance into /.

Possible strategies to estimate a 5-fattening .#s = {x : dist(x, .#) < &} given data X', ..., X" "¢ ¢and
an estimator 8 of 8 := V log h:
« plug-in approach: estimate .# s directly or indirectly by setting ,/%\5 = (%5; then set
C=inflt>0: 7} e Mg}

« use explosive behaviour of 8 as x — /:

Theorem
Suppose that ./ is polar for X and Y solving dY; = a(Y;) dB;. Then, it a.s. holds that

7= inf{t >0 : sup|8(ZM)| = oo} = inf{t >0 : ||§(Zh)||L2([o,t]) = oo}.
s<t
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Denoising score matching

. for ]Pa(Z£ € )-a.e. x

a(dy)zJV log G, (x, y) ———— Gr(xy)
h(x)h (y)

—]E[V IogG(xZ )|ZO —x]

8(x) = Vlog f(x) = hL | R o(dy)

x)

h(y)

=E,[V, log G,(x, Zoh) | Zg, = x|
« this implies that on RY \ /s, 8 agrees ]Pa(ng_ € -)-a.e. with the minimiser of
d.pd h h —~h (2
BRI RY) = 5 > Ea[”s(Zg_) ~Vlog G(Z}, Z )1y, zg,—zg7||>5}]

« note that if Z" = Z, then { ~ Exp(r) independent of Z, Z;_ = Xy has full support and we have

¢
Ed[|s(z8)-vlog G.(Z8, ZE )|, 2 2ipsy] = Ed] L sz~ log GA(Z{, ZIN gy 70_ 715 ]
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Projection learning

« we don’t have to start the backward process approximately in ]Pa(Z£ € dy): it will always be killed
on the data support .# and different initialisations will yield different output distributions
supported on . ~ natural conditioning

- a natural question is therefore what happens if we don’t start the generative process from pure
noise but something more informative, say a masked or moderately noised picture

« it turns out that the natural conditioning aspect entails a blessing of dimensionality
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Projection learning

Let Z be an exponentially killed Brownian motion. Then,

) k().

00 = [ G yatdn Gxy) =220
Ix =yl

For large d,

I |:__;/‘d a(dy)

[Ix = y1>~9 a(dy)
and thus, if there is a unique projection x* € arg minyeﬂ|x — y| of x onto ., then

Vlog l;(x) ~d

. . sign(x™ — x)
Vg h(x) ~ d ==X =
g (X) |X*—X|2 |X*—X|

Theorem

Let 8,¢ > 0 and fix an observation x € R%. If a(B(x, r)) > ¢ for some ball B(x, r) with radius r > 0
around y, then

P(ZL € M0 B (1 +8)) | 28 =x) > 1- 1 +8)>.
&
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Projection learning

Consider now estimators 8, an independent Brownian motion W and let 751 be the process solving

dZ% = 3,28, _s dt +1,,_s dW,, = inf{tz 0 : 1Z%] 20, > M}.

{t<} {t<}

Theorem

Fix an observation x € RY. Suppose that
. forany 8,8, > 0 it holds for sufficiently large n that
5 (7Y _acsh .
P(”(gn(z IRLCL0) L HET I

. forany n € N and & > 0, the function 3, is Ls-Lipschitz on /%;

>5‘Z(§':x><s

Let 8,¢,8,& > 0. If a(B(x, r)) > ¢ then, for sufficiently large M > 0 and n € IN,

lP(?gf’" € M5 B(x,(1 +6)r)|20§" =x) > 1- l(1 LAY g,
&
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Projection learning

Consider now estimators 8, an independent Brownian motion W and let 751 be the process solving

dZ7" = 82PN gy dt+ 1y AW, o= inffe 205 123000, > M)

{t<{} {t<}

Theorem

Fix an observation x € RY. Suppose that
. forany 8,8, > 0 it holds for sufficiently large n that
5 (7P _ a(7h i
P(|Euzh - 8@ i, 4,

. forany n € N and § > 0, the function 8, is Ls-Lipschitz on .%;

. >5‘Z(§’ =x> <e

Let 8,¢,5, > 0. If a(B(x, r)) > ¢ then, for sufficiently large M > 0 and n € IN,

P(Z]" € M50 Bx,(1+8))] 25" = x) > 1- Ta+s)rd -
&

Thank you for your attention!
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