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Framework for data-driven stochastic optimal control

consider a d-dimensional diffusion
dXt = b(Xt) dr + O'(Xt) dW[,

we assume that the drift b is unknown

which challenges arise from this uncertainty when we want to optimally control the process and
how can they be solved in a data-driven way?
concrete control problems considered in the literature:

1. impulse controls in 1D (Christensen, Strauch (AOAP, 2023); Christensen, Dexheimer, Strauch (2023+))
2. reflection controls (singular) (Christensen, Strauch, T. (Bernoulli, 2024); Christensen, Holk Thomsen, T.
uQ, 2024))
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Challenge

Exploration vs. exploitation
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Reflection control problem

- consider a d-dimensional Langevin diffusion
dX; = —VV(Xp) dt +V2dW;;

if ergodic: stationary density 7 « exp(—V(-))
+ we play the following game:

1. the aim is to keep the process close to a target state, say 0, at minimal long run costs
2. normally reflect the process in a domain D that we are free to choose:

dxP = —vv(XP)dt + V2dW, + n(XP)dLP, where LP = Iiﬂ; 1 J 1(p),(XP) ds
a & Jo

3. costs:

)
J(D) = j CxPydt+  KL?

—
— reflection costs
cincreasing in [x|
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Reflection control problem

« consider a d-dimensional Langevin diffusion
dX; = —VV(Xp) dt +V2dW;;

if ergodic: stationary density 7 o< exp(—V(-))
« we play the following game:
1. the aim is to keep the process close to a target state, say 0, at minimal long run costs
2. normally reflect the process in a domain D that we are free to choose:

s
dXP = —vv(XP)dt + V2dW, + n(XP)dLP, where LP = Iiw 1 J 190, (XP) ds
€. & Jo

3. costs:
=

jT(D):J c(xPyde+  xL?
h =,

~———— reflection costs
c increasing in |x|

« Ergodic optimal control: for an admissible domain class © determine

D* € argmin lim l]EUT(D)] (~ shape optimisation problem)
Dpeo T—e T

=J(D)
« Data-driven optimal control: If V is unknown, determine an estimator D of D* based on
observations of the (controlled) process 3/15



Ergodic costs
« let D be a class of C2-domains such that for any D € D we have infx,yeﬁ pP(x,y) > 0 for
bicontinuous transtion densities p
. for any D € D, XP is ergodic with invariant density

exp(=V(x))

() = TV

(= n(x)/x(D) if free diffusion is ergodic)

Theorem
For any D € D, it holds that

JUD:J;dmmﬂOdX+KLDmxﬂ7Q40h)

and

e{L([ P eng) o) 5o & xeo

Ife”V € L'(RY), then in particular

_ __ 1 d—1
waWQM—bﬂwwq;wmww+4¥mw% (dy)).
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Invariant density estimation

Multivariate kernel density estimator:

T d

2 1

A, 7(x) = — j K((x = Xp/hydt, KG) =[] K, x/h=(xi/h)ier,.d-
Hi:1 hi i=1

Results from Strauch (AOS, 2018) show that if X satisfies both a Poincaré inequality and a Nash

inequality, then under anisotropic f-Holder smoothness assumptions on 7« and sufficient order of K,
there exists an adaptive bandwith choice ht such that

Jlog T/T, d=1,
. p1/P log T d=2 _
T T~ 7T||°°] SYap(M=177" > where = (

B
(IOgT)zﬁ+d 2 d>3,

Sy

i=1

B

QI—‘
>|=
\_/
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Learning the optimal reflection boundary

Proposition
Let 7 := frilT 7V, where 7 > on B(0, 7). Let ® be a family of domains s.t. B(0, 1) ¢ D c B(0, 1) and

FHI1(9D) < A for any D € @. For

BT € argmin J(D, 77),
De®

it holds for a warm start p that

EA[J(Dr,m) = min J(D, m)] < ¥q,4(T).
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Learning the optimal reflection boundary

Proposition

Let 7 := frilT 7V, where 7 > on B(0, ). Let © be a family of domains s.t. B(0,4) ¢ D ¢ B(0, ) and
FHI1(9D) < A for any D € ©. For

BT € argmin J(D, #7),
De®
it holds for a warm start p that

E[J(Dr,m) = min J(D, m)] < ¥q,4(T).

~> this gives a bound on the simple regret only

~> how can we use this to determine strategies that overcome exploration vs. exploitation tradeoff
with sublinear regret rate?
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Episodic domain learning in 1D

90 1 7717 - y - .
0 a
&1 ------ TV L ety
A % T %
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Regret bound for episodic domain learning

Theorem (Christensen, Strauch, T. (2024)"; Christensen, Holk, T. (2024)?)

There exists a purely data-driven episodic domain learning strategy Z such that the expected regret
per time unit satisfies
Jlog T
TA d=1,
(log T)?\ > _
—ro)

.
1 3 2 :
—E| L CXF)dt + k%] - (D) <

(
(loir)aﬁfif—z’ d>3.

'Strauch, Christensen and Trottner (2024). Learning to reflect: A unifying approach to data-driven control strategies. Bernoulli
2Christensen, Holk Thomsen and Trottner (forthcoming). Data-driven rules for multidimensional reflection problems. SIAM/ASA J.
Uncert. Quantif.
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Regret bound for episodic domain learning

Theorem

There exists a purely data-driven episodic domain learning strategy Z such that the expected regret
per time unit satisfies

Jlog T _

Vet d=1,

T 2 > 1
CXF)dt + k%] - J(D*) < (@)5’ P

il

(l(’%—’-)sﬁi—z’ d> 3.

« 1D case: for St the (random) exploration time and Nt the number of exploration intervals until

time T, choose a strategy such that for some m, M > 0,

P(T723s; <M)< T3 and limsup T"23E[N;] < M
T—o0
« if (cp)ne is a binary sequence with ¢, = 0 if n-th period is exploration, this is satified provided
that for some a > 0
n?/3 < {i<n:c =0} <l +a
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Regret bound for episodic domain learning

Theorem

There exists a purely data-driven episodic domain learning strategy Z such that the expected regret
per time unit satisfies

Jlog T _

Vet d=1,

T = P 1
c(XtZ)dt+1<Lﬂ—j(D*)S (M)s, d=2

il

(l(’%—’-)sﬁi—z’ d> 3.

» multivariate case: X does not hit points for d > 2 + construction of stochastic
exploration/exploitation intervals as in the one-dimensional case not feasible

- instead: alternate between exploration/exploitation intervals with deterministic lengths a; = 2/
and exploitation lengths b; = a;/%¥ 4 g(a;) (+ asymptotically negligible stochastic fluctuation for
exploitation lengths to make sure that the process is inside of proposed reflection domain)

« for technical reasons estimated reflection domain in i-th exploitation interval calculated only from

data in i-th exploration interval
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Numerical shape optimisation

« as target domains © only allow strongly star-shaped sets at 0 (appropriate when continuous costs
c are minimised close to the origin) ~» dD = {r(q)q : q € Sd_1} for some radial function
r: 8971 5 (0,0)

« for N points {g;}¥, c 591 consider the polytope D with vertices i, = {r(g)gi}Y; ~ D can be
split into N simplices {S,},c7 with facets {F;},c7 opposite the origin
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Numerical shape optimisation

as target domains © only allow strongly star-shaped sets at 0 (appropriate when continuous costs
c are minimised close to the origin) ~» dD = {r(q)q : q € Sd_1} for some radial function

r: 8971 5 (0,0)

for N points {g;}}, ¢ 591 consider the polytope D with vertices i, = {r(g)gi}Y; ~ D can be
split into N simplices {S,},c7 with facets {F;},c7 opposite the origin

for r = {r;}¥; = {r(g)}L, we have

J(D) = J(D) = J(r) = Z (J' c(x)e” V) dx + KJ, e~ V() ggd-1 (dx))
s, F

1
Xieg JS, eV dx iz 1

we derive explicit expressions for VJ(r) to employ a gradient descent algorithm for shape
optimisation
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. Top left: Brownian motion

Simulated optimal shapes and corresponding path realisations of reflected processes
with norm cost. Top right: Ornstein—-Uhlenbeck process with norm cost. Bottom left: Brownian motion with skewed

cost. Bottom right: Ornstein-Uhlenbeck process with skewed cost.
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Brownian motion

Ornstein—-Uhlenbeck

norm cost function 2.22 (2.31)

1.18 (1.15)

skewed cost function 2.83(2.91)

1.66 (1.74)

Table 1: Average realized costs vs. expected average long term costs (in brackets)
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Simulation of reflected diffusion (Stfominski, SPA 1994): simulate proposal
XEOP A = Xon = VV(Xun)A +N28E, 1, (&) N, 1),

then set

Xn+a = ProjD(X(’;rif)A), Lins1ya = Lon + |X(p,,r+0$)A - X(n+1)A|
this works well for polyhedral domains D in low dimensions because projection can be simulated
efficiently
Fishman et al. (NeurlPS, 2023) demonstrate weak convergence of Metropolis approximation and
Rejection approximation of reflected Brownian motion
this is motivated by denoising reflected diffusion models (Lou and Ermon, ICML 2023), see also
Holk, Strauch and T. (2024+) for a first statistical analysis
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Optimised shapes for Brownian motion with reflection cost k = 1 and cost function ¢ = || (left) and

c(x,y,z) = [x? + 5y? + 22 (right).
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K

For each value of k, we use the BFGS algorithm (using the built-in R implementation optim) to find an approximate
optimal shape. To not bias the results towards a ball, we initialize the algorithm with r; =1 + %U,v, where

U; ~ Unif[-1,1] for i = 1,..., N (N = 200). Once the approximate optimal values ri, f,, ..., Fy are found, we plot the
mean of these along with error bars with height of their standard deviation. For reference we draw a curve of the
theoretical optimal radius r* = /(d + 1)x. Finally, we also add a bar-plot illustrating the number of iterations of the
BFGS algorithm were needed to compute the shapes.
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For each k, we plot the optimized reflection boundaries, where 7 is a mixture of three Gaussians with means at the
points marked in red. Left: Norm cost function, ¢ = |-|. Right: Cost function c(x) = min{|x — g, |x — |, [x — us[}.
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Estimates of the optimal shape (black) using kernel estimates after increasing periods of exploration. Notably, after
only T =150, the estimated optimal shape has an associated cost only 0.61% higher than the true optimum.
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Thank you for your attention!
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