Learning to reflect: On data-driven approaches to stochastic control

ISOR Colloquium - University of Vienna

Lukas Trottner based on joint work with Sören Christensen, Asbjørn Holk Thomsen and Claudia Strauch 8 April 2024

Aarhus University Kiel University

Outline

- 1. A singular control problem for scalar ergodic diffusions
- 2. Data-driven approach to singular control
- 3. Extension to higher dimensions
- 4. Data-driven optimal control for Lévy processes

A singular control problem for scalar ergodic diffusions

regular 1-dim. Itô diffusion

 $dX(t) = b(X_t) dt + \sigma(X_t) dW_t,$

with assumptions that guarantee an invariant density

$$\pi(x) := \frac{1}{C\sigma^2(x)} \exp\left(2\int_0^x \frac{b(y)}{\sigma^2(y)} \,\mathrm{d}y\right)$$

and ergodicity in the sense $\mathbb{P}(X_t \in dx) \xrightarrow[t \to \infty]{\text{TV}} \pi(x) dx$.

• Singular control: $Z = (U_t, D_t)_{t \ge 0}, U, D$ non-decreasing, right-continuous and adapted,

$$\mathrm{d}X_t^Z = b(X_t^Z)\,\mathrm{d}t + \sigma(X_t^Z)\,\mathrm{d}W_t + \mathrm{d}U_t - \mathrm{d}D_t.$$

For reflection controls (U^{ξ}, D^{θ}) we have $X_t^Z \in [\xi, \theta]$ for all t

• Singular control: $Z = (U_t, D_t)_{t \ge 0}, U, D$ non-decreasing, right-continuous and adapted,

$$\mathrm{d}X_t^Z = b(X_t^Z)\,\mathrm{d}t + \sigma(X_t^Z)\,\mathrm{d}W_t + \mathrm{d}U_t - \mathrm{d}D_t.$$

For reflection controls (U^{ξ}, D^{θ}) we have $X_t^Z \in [\xi, \theta]$ for all t

c continuous, nonnegative running cost function, q_u, q_d > 0. Minimize

$$\limsup_{T\to\infty} \frac{1}{T} \mathbb{E}\Big[\int_0^T c(X_s^Z) \,\mathrm{d}s + q_u U_T + q_d D_T\Big],$$

For each (ξ, θ) , the corresponding reflection strategy has value

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \pi(x) \,\mathrm{d}x} \left(\int_{\xi}^{\theta} c(x)\pi(x) \,\mathrm{d}x + \frac{q_u \sigma^2(\xi)}{2} \pi(\xi) + \frac{q_d \sigma^2(\theta)}{2} \pi(\theta) \right).$$

For each (ξ, θ) , the corresponding reflection strategy has value

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \pi(x) \,\mathrm{d}x} \left(\int_{\xi}^{\theta} c(x)\pi(x) \,\mathrm{d}x + \frac{q_u \sigma^2(\xi)}{2} \pi(\xi) + \frac{q_d \sigma^2(\theta)}{2} \pi(\theta) \right).$$

Theorem (Alvarez (2018))

Under some technical assumptions, the optimal value for the singular problem is given by

$$V_{\text{sing}} = \min_{(\xi,\theta)} C(\xi,\theta).$$

and the reflection strategy for the minimizer (ξ^*, θ^*) is optimal.

Data-driven approach to singular control

Central Assumption in Stochastic Control The dynamics of the underlying process is known.

What to do if this is not the case?

- Which are the relevant *characteristics* of X to *estimate* approximately optimal boundaries?
- How does controlling the process *influence* the estimation?

Crucial characteristics: b (assume σ to be known).

Estimator

Crucial characteristics: b (assume σ to be known).

Singular problem: $V_{\text{sing}} = \min_{(\xi,\theta) \in [-B, -1/B] \times [1/B,B]} C(\xi, \theta).$

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \pi(x) \,\mathrm{d}x} \left(\int_{\xi}^{\theta} c(x)\pi(x) \,\mathrm{d}x + \frac{q_u \sigma^2(\theta)}{2} \pi(\xi) + \frac{q_d \sigma^2(\xi)}{2} \pi(\theta) \right)$$

Estimator

Crucial characteristics: b (assume σ to be known).

Singular problem: $V_{\text{sing}} = \min_{(\xi,\theta) \in [-B,-1/B] \times [1/B,B]} C(\xi,\theta).$

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \pi(x) \, \mathrm{d}x} \left(\int_{\xi}^{\theta} c(x) \pi(x) \, \mathrm{d}x + \frac{q_u \sigma^2(\theta)}{2} \pi(\xi) + \frac{q_d \sigma^2(\xi)}{2} \pi(\theta) \right)$$

Plug-in estimator: If $\hat{\pi}_T$ is an estimator of π and we know $\pi \ge \underline{\pi} > 0$ on [-B, B], then for $\hat{\pi}_T^* := \hat{\pi}_T \lor \underline{\pi}$ set

$$\widehat{C}_{T}(\xi,\theta) \coloneqq \frac{1}{\int_{\xi}^{\theta} \widehat{\pi}_{T}^{*}(x) \, \mathrm{d}x} \left(\int_{\xi}^{\theta} c(x) \widehat{\pi}_{T}^{*}(x) \, \mathrm{d}x + \frac{q_{u}\sigma^{2}(\xi)}{2} \widehat{\pi}_{T}^{*}(\xi) + \frac{q_{d}\sigma^{2}(\theta)}{2} \widehat{\pi}_{T}^{*}(\theta) \right),$$

$$\widehat{(c,d)}_{T} \in \operatorname*{arg\,min}_{(\xi,\theta)\in[-B,-1/B]\times[1/B,B]} \widehat{C}_{T}(\xi,\theta)$$

Estimator

Crucial characteristics: b (assume σ to be known).

Singular problem: $V_{\text{sing}} = \min_{(\xi,\theta) \in [-B,-1/B] \times [1/B,B]} C(\xi,\theta).$

$$C(\xi,\theta) = \frac{1}{\int_{\xi}^{\theta} \pi(x) \,\mathrm{d}x} \left(\int_{\xi}^{\theta} c(x)\pi(x) \,\mathrm{d}x + \frac{q_u \sigma^2(\theta)}{2} \pi(\xi) + \frac{q_d \sigma^2(\xi)}{2} \pi(\theta) \right)$$

Plug-in estimator: If $\hat{\pi}_T$ is an estimator of π and we know $\pi \ge \underline{\pi} > 0$ on [-B, B], then for $\hat{\pi}_T^* := \hat{\pi}_T \lor \underline{\pi}$ set

$$\begin{split} \widehat{C}_{T}(\xi,\theta) &\coloneqq \frac{1}{\int_{\xi}^{\theta} \widehat{\pi}_{T}^{*}(x) \,\mathrm{d}x} \left(\int_{\xi}^{\theta} c(x) \widehat{\pi}_{T}^{*}(x) \,\mathrm{d}x + \frac{q_{u}\sigma^{2}(\xi)}{2} \widehat{\pi}_{T}^{*}(\xi) + \frac{q_{d}\sigma^{2}(\theta)}{2} \widehat{\pi}_{T}^{*}(\theta) \right), \\ \widehat{(c,d)}_{T} &\in \operatorname*{arg\,min}_{(\xi,\theta) \in [-B,-1/B] \times [1/B,B]} \widehat{C}_{T}(\xi,\theta) \end{split}$$

Then,

$$\mathbb{E}_{b}\left[\widehat{C((c,d)_{T})} - V_{\text{sing}}\right] \leq 2\mathbb{E}_{b}\left[\max_{(\xi,\theta)\in[-B,-1/B]\times[1/B,B]}\left|C(\xi,\theta) - \widehat{C}_{T}(\xi,\theta)\right|\right] \lesssim \mathbb{E}_{b}\left[\left\|\widehat{\pi}_{T} - \pi\right\|_{L^{\infty}([-B,B])}\right].$$

 \rightsquigarrow need non-asymptotic sup-norm rates for an appropriate nonparametric estimator $\hat{\pi}_T$

Concentration of kernel density estimator

Let

$$\hat{\pi}_T(x) := \frac{1}{Th_T} \int_0^T K\Big(\frac{x - X_t}{h_T}\Big) dt$$

be a kernel estimator for π .

Proposition (Christensen, Strauch, T. (2024+)) Suppose that

- 1. b, σ are Lipschitz and $0 < \underline{\sigma} \le \sigma(x) \le \overline{\sigma} < \infty$ for all x;
- 2. for some γ , A > 0, sgn $(x)b(x) \le -\gamma$ if |x| > A;
- 3. $\pi_b \in C^1(\mathbb{R})$ with Hölder continuous derivative.

Then, given a compactly supported and symmetric probability density *K* and the bandwidth choice $h_T \sim (\log T)^2 / \sqrt{T}$ we have

$$\mathbb{E}_{b}^{0}\left[\left\|\hat{\pi}_{T}-\pi\right\|_{L^{\infty}(D)}^{p}\right]^{1/p} \in \mathcal{O}\left(\sqrt{\frac{\log T}{T}}\right)$$

for any $p \ge 1$ and any open, bounded domain *D*.

Combining

$$\mathbb{E}_b^0\left[C(\widehat{(c,d)}_T) - V_{\text{sing}}\right] \leq \mathbb{E}_b^0\left[\|\hat{\pi}_T - \pi\|_{L^{\infty}([-B,B])}\right]$$

and

$$\mathbb{E}_{b}^{0}\left[\|\hat{\pi}_{T} - \pi\|_{L^{\infty}\left([-B,B]\right)}\right] \in \mathcal{O}\left(\sqrt{\frac{\log T}{T}}\right)$$

we obtain:

Corollary (Christensen, Strauch, T. 2024+)) Given the previous assumptions on *X*, it holds

$$\mathbb{E}_b^0\left[\widehat{C((c,d)_T)} - V_{\text{sing}}\right] \in O\left(\sqrt{\frac{\log T}{T}}\right)$$

Naïve idea:

- · estimate the optimal boundary based on the controlled process
- use the strategy based on the estimated boundary

Naïve idea:

- · estimate the optimal boundary based on the controlled process
- use the strategy based on the estimated boundary

Problem Exploration vs. Exploitation!

Strategy to overcome exploration vs. exploitation dilemma

Theorem (Christensen, Strauch, T. (2024+))

If we consider a data-driven reflection strategy \hat{Z} s.t. the time S_T spent in exploration periods until time T is of order $S_T \approx T^{2/3}$, then the expected regret per time unit,

$$\frac{1}{T}\mathbb{E}_b^0 \Big[\int_0^T c(X_s^{\widehat{Z}}) \,\mathrm{d}s + q_u U_T^{\widehat{Z}} + q_d D_T^{\widehat{Z}} \Big] - V_{\mathrm{sing}}$$

is of order O($\sqrt{\log T} T^{-1/3}$).

Extension to higher dimensions

• Let now $d \ge 2$ and consider a *d*-simensional Langevin diffusion

 $\mathrm{d}X_t = -\nabla V(X_t)\,\mathrm{d}t + \sqrt{2}\,\mathrm{d}W_t,$

with C^2 potential $V : \mathbb{R}^d \to \mathbb{R}$;

- if e^{-V} is integrable, then *X* is ergodic with invariant density $\pi \propto e^{-V}$;
- normally reflected process in domain D of class C^2

$$\mathrm{d}X_t^D = -\nabla V(X_t^D) + \sqrt{2}\,\mathrm{d}W_t + n(X_t^D)\,\mathrm{d}L_t^D,$$

where *n* is the inward unit normal vector of *D* and L^{D} is local time of *X* on ∂D

• control problem: minimize

$$C(D) := \limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \Big[\int_0^T c(X_t^D) \, \mathrm{d}t + \kappa L_T^D \Big]$$

over appropriate class of domains D ($c \ge costs$ inside domain, $\kappa > 0$ costs at the boundary)

Let *D* be a class of domains such that for any $D \in D$ we have $\inf_{x,y\in\overline{D}} p_1^D(x,y) > 0$.

Theorem (Christensen, Holk, T. (2024+))

Let \mathcal{H}^{d-1} be the (d-1)-dimensional Hausdorff measure. For any $x \in D \in D$, it holds that

$$C(D) = \frac{1}{\int_D e^{-V(y)} dy} \Big(\int_D c(y) e^{-V(y)} dy + \kappa \int_{\partial D} e^{-V(y)} \mathcal{H}^{d-1}(dy) \Big).$$

and

$$\mathbb{E}^{x}\Big[\Big|\frac{1}{T}\Big(\int_{0}^{T}c(X_{t}^{D})\,\mathrm{d}t+\kappa L_{T}^{D}\Big)-C(D)\Big|\Big]\lesssim_{D}\frac{1}{\sqrt{T}}.$$

If $e^{-V} \in L^1(\mathbb{R}^d)$, then in particular

$$C(D) = C(D,\pi) = \frac{1}{\int_D \pi(y) \,\mathrm{d}y} \Big(\int_D c(y)\pi(y) \,\mathrm{d}y + \kappa \int_{\partial D} \pi(y) \,\mathcal{H}^{d-1}(\mathrm{d}y) \Big)$$

Optimization for star-shaped domains

- let *D* be strongly star-shaped at $0 \rightsquigarrow \partial D = \{r(q)q : q \in S^{d-1}\}$ for some radial function $r: S^{d-1} \to (0, \infty)$
- for *N* points $\{q_i\}_{i=1}^N \subset S^{d-1}$ consider the polytope \widetilde{D} with vertices $\{p_i\}_{i=1}^N = \{r(q_i)q_i\}_{i=1}^N \rightsquigarrow \widetilde{D}$ can be split into *N* simplices $\{S_I\}_{I \in \mathcal{I}}$ with facets $\{F_I\}_{I \in \mathcal{I}}$ opposite the origin
- for $r = {r_i}_{i=1}^N = {r(q_i)}_{i=1}^N$ we have

$$J(D) \approx J(\widetilde{D}) \equiv J(\mathbf{r}) = \frac{1}{\sum_{l \in \mathcal{I}} \int_{S_l} e^{-V(x)} dx} \sum_{l \in \mathcal{I}} \left(\int_{S_l} c(x) e^{-V(x)} dx + \kappa \int_{F_l} e^{-V(x)} \mathcal{H}^{d-1}(dx) \right)$$

• we derive explicit expressions for $\frac{\partial J(r)}{\partial r_i}$ based on which we propose a gradient descent algorithm to optimize ergodic costs in the class of star-shaped domains

Numerical implementation

Figure 1: Simulated optimal shapes and corresponding path realizations of reflected processes.

Learning the optimal reflection boundary

Multivariate kernel density estimator:

$$\hat{\pi}_{h,T}(x) \coloneqq \frac{1}{\prod_{i=1}^{d} h_i} \int_0^T \mathbb{K}((x - X_t)/h) \, \mathrm{d}t, \quad \mathbb{K}(x) \coloneqq \prod_{i=1}^{d} K(x_i), \quad x/h \coloneqq (x_i/h_i)_{i=1,\dots,d}$$

Results from Strauch (2018) show that if X satisfies both a Poincaré inequality and a Nash inequality, then under anisotropic β -Hölder smoothness assumptions on π and sufficient order of K, there exists an adaptive bandwith choice \hat{h}_T such that

$$\mathbb{E}^{\pi} \Big[\left\| \hat{\pi}_{\hat{h}_{T},T} - \pi \right\|_{\infty}^{p} \Big]^{1/p} \lesssim \Psi_{d,\beta}(T) \coloneqq \begin{cases} \frac{\log T}{\sqrt{T}}, & d = 2, \\ \left(\frac{\log T}{T} \right)^{\frac{\overline{p}}{2\overline{\beta} + d - 2}}, & d \ge 3, \end{cases} \quad \text{where } \overline{\beta} = \left(\frac{1}{d} \sum_{i=1}^{d} \frac{1}{\beta_{i}} \right)^{-1}.$$

Learning the optimal reflection boundary

Multivariate kernel density estimator:

$$\hat{\pi}_{h,T}(x) \coloneqq \frac{1}{\prod_{i=1}^{d} h_i} \int_0^T \mathbb{K}((x - X_t)/h) \, \mathrm{d}t, \quad \mathbb{K}(x) \coloneqq \prod_{i=1}^{d} K(x_i), \quad x/h \coloneqq (x_i/h_i)_{i=1,\dots,d}$$

Results from Strauch (2018) show that if X satisfies both a Poincaré inequality and a Nash inequality, then under anisotropic β -Hölder smoothness assumptions on π and sufficient order of K, there exists an adaptive bandwith choice \hat{h}_T such that

$$\mathbb{E}^{\pi} \Big[\| \hat{\pi}_{\hat{h}_{T},T} - \pi \|_{\infty}^{p} \Big]^{1/p} \lesssim \Psi_{d,\beta}(T) \coloneqq \begin{cases} \frac{\log T}{\sqrt{T}}, & d = 2, \\ \left(\frac{\log T}{T}\right)^{\frac{\overline{\beta}}{2\overline{\beta} + d - 2}}, & d \ge 3, \end{cases} \quad \text{where } \overline{\beta} = \left(\frac{1}{d} \sum_{i=1}^{d} \frac{1}{\beta_{i}}\right)^{-1}.$$

Proposition (Christensen, Holk, T. (2023+))

Let $\hat{\pi}_T^* := \hat{\pi}_T \vee \underline{\pi}$, where $\pi \ge \underline{\pi}$ on $B(0, \overline{\lambda})$. Let Θ be a family of domains s.t. $B(0, \underline{\lambda}) \subset D \subset B(0, \overline{\lambda})$ and $\mathcal{H}^{d-1}(\partial D) \le \Lambda$ for any $D \in \Theta$. For $\widehat{D}_T \in \arg\min_{D \in \Theta} C(D, \hat{\pi}^*_{\hat{h}_T, T})$, it holds for a warm start that

$$\mathbb{E}^{\mu} \Big[C(\widehat{D}_{\mathcal{T}}, \pi) - \min_{D \in \Theta} C(D, \pi) \Big] \lesssim \Psi_{d, \beta}(\mathcal{T}).$$

Figure 2: Estimates of the optimal shape (black) using kernel estimates after increasing periods of exploration. Notably, after only T = 150, the estimated optimal shape has an associated cost only 0.61% higher than the true optimum.

- X does not hit points ---> construction of stochastic exploration/exploitation intervals as in the one-dimensional case not feasible
- instead: alternate between exploration/exploitation intervals with deterministic lengths a_i and b_i
 (+ small stochastic fluctuation for exploitation lengths to make sure that the process is inside of proposed reflection domain)

Theorem (Christensen, Holk, T. (2024+))

If we choose exploration lengths $a_i \approx 2^i$ and exploitation lengths $b_i \approx a_i/\Psi_{d,\beta}(a_i)$, then a strategy that reflects the process in the *i*-th exploitation interval at a boundary estimated based on data collected in the *i*-th exploration interval, yields a regret per time unit of order

$$\frac{1}{T}\mathbb{E}\big[\widetilde{C}_T\big] - C(D^*) \leq \begin{cases} \left(\frac{(\log T)^2}{T}\right)^{\frac{1}{3}}, & d = 2, \\ \left(\frac{\log T}{T}\right)^{\frac{\beta+1}{3\beta+1+d-2}}, & d \geq 3. \end{cases}$$

Data-driven optimal control for Lévy processes

- ξ upward regular Lévy process on \mathbb{R} , $\mathbb{E}^0[\xi_1] \in (0, \infty)$
- for impulse controls $S = (\tau_n, \zeta_n)_{n \in \mathbb{N}}$

$$\xi_t^S = \xi_t - \sum_{n:\tau_n \le t} (\xi_{\tau_n, -}^S - \zeta_n)$$

and for a given value function γ solve

$$v^* := \sup_{S} \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}^{x} \left[\sum_{n: \tau_n \leq T} \left(\gamma \left(\xi^{S}_{\tau_n, -} \right) - \gamma (\zeta_n) \right) \right]$$

19/25

---- X, a Lévy process $---- \bar{X}_t = \sup_{s \le t} X_s, the running supremum$

X, a Lévy process $\bar{X}_t = \sup_{s \le t} X_s$, the running supremum H_t , the ascending ladder height process: suprema 'stitched together'

X, a Lévy process $\bar{X}_t = \sup_{s \le t} X_s$, the running supremum H_t , the ascending ladder height process: suprema 'stitched together'

— X, a Lévy process

 $---- \bar{X}_t = \sup_{s \le t} X_s$, the running supremum

 \cdots H_t , the ascending ladder height process: suprema 'stitched together'

----- \hat{H}_t , the descending ladder height process

— X, a Lévy process

 $--- \bar{X}_t = \sup_{s < t} X_s$, the running supremum

------ H_t , the ascending ladder height process: suprema 'stitched together'

----- \hat{H}_t , the descending ladder height process

 H, \hat{H} are subordinators (increasing Lévy processes), possibly killed

- essential process determining optimal solution: ascending ladder height process $H_t = \xi_{L_t^{-1}}$, where $(L_t)_{t \ge 0}$ is local time at supremum of ξ
- Reason: for scaling of *L* s.t. $\mathbb{E}^{0}[\xi_{1}] = \mathbb{E}^{0}[H_{1}]$ the long term average reward when reflecting in *x* is given by

$$d_{H}\gamma'(x) + \int_{0}^{\infty} (\gamma(x+y) - \gamma(x)) \Pi_{H}(\mathrm{d}y) = \mathcal{A}_{H}\gamma(x) = \lim_{\varepsilon \downarrow 0} \frac{\mathbb{E}^{x}[\gamma(\xi_{\mathcal{T}_{x+\varepsilon}})] - \gamma(x)}{\mathbb{E}^{x}[\mathcal{T}_{x+\varepsilon}]}$$

- essential process determining optimal solution: ascending ladder height process $H_t = \xi_{L_t^{-1}}$, where $(L_t)_{t\geq 0}$ is local time at supremum of ξ
- Reason: for scaling of *L* s.t. $\mathbb{E}^{0}[\xi_{1}] = \mathbb{E}^{0}[H_{1}]$ the long term average reward when reflecting in *x* is given by

$$d_{H}\gamma'(x) + \int_{0}^{\infty} (\gamma(x+y) - \gamma(x)) \Pi_{H}(\mathrm{d}y) = \mathcal{A}_{H}\gamma(x) = \lim_{\varepsilon \downarrow 0} \frac{\mathbb{E}^{x}[\gamma(\xi_{T_{x+\varepsilon}})] - \gamma(x)}{\mathbb{E}^{x}[\mathcal{T}_{x+\varepsilon}]}$$

Theorem (Christensen, Sohr (2020))

Let $f := A_H \gamma$ be unimodal with maximizer θ^* (+ technical assumptions). Then $v^* = f(\theta^*)$ and reflecting in θ^* is optimal.

1. Construct nonparametric estimator \hat{f}_T of $f = \mathcal{A}_{H\gamma}$ given data $(\xi_t)_{t \in [0,T]}$

- 1. Construct nonparametric estimator \hat{f}_T of $f = \mathcal{A}_{H\gamma}$ given data $(\xi_t)_{t \in [0,T]}$
- 2. Use $\hat{\theta}_T := \arg \max_x \hat{f}_T(x)$ as an estimator of the optimal reflection boundary

- 1. Construct nonparametric estimator \hat{f}_T of $f = \mathcal{A}_{H\gamma}$ given data $(\xi_t)_{t \in [0,T]}$
- 2. Use $\hat{\theta}_T := \arg \max_x \hat{f}_T(x)$ as an estimator of the optimal reflection boundary
- 3. Analyze sup-norm estimation rates of \hat{f}_T to determine regret of the strategy, since for $\theta^* \in D$

 $\mathbb{E}^{0}[f(\theta^{*}) - f(\hat{\theta}_{T})] \leq 2\mathbb{E}^{0}[\|\hat{f}_{T} - f\|_{L^{\infty}(D)}].$

- 1. Construct nonparametric estimator \hat{f}_T of $f = \mathcal{A}_{HY}$ given data $(\xi_t)_{t \in [0,T]}$
- 2. Use $\hat{\theta}_T := \arg \max_x \hat{f}_T(x)$ as an estimator of the optimal reflection boundary
- 3. Analyze sup-norm estimation rates of \hat{f}_T to determine regret of the strategy, since for $\theta^* \in D$

 $\mathbb{E}^{0}[f(\theta^{\star}) - f(\hat{\theta}_{T})] \leq 2\mathbb{E}^{0}[\|\hat{f}_{T} - f\|_{L^{\infty}(D)}].$

Statistical challenge

How can we build an estimator of A_{HY} although local time *L* cannot be observed?

$$\mathcal{A}_{H}\gamma(x) = d_{H}\gamma'(x) + \int_{0+}^{\infty} (\gamma(x+y) - \gamma(x)) \Pi_{H}(\mathrm{d}y) = \int_{0}^{\infty} \eta \gamma'(x+y) \,\mu(\mathrm{d}y)$$

where $\eta = \mathbb{E}^{0}[\xi_{1}]$ and
$$\mu(\mathrm{d}y) = \frac{1}{\mathbb{E}^{0}[\xi_{1}]} \Big(d_{H}\delta_{0}(\mathrm{d}y) + \Pi_{H}((y,\infty)) \,\mathrm{d}y \mathbf{1}_{(0,\infty)}(y) \Big), \quad y \ge 0.$$

$$\mathcal{A}_{HY}(x) = d_{HY}'(x) + \int_{0+}^{\infty} (\gamma(x+y) - \gamma(x)) \Pi_{H}(\mathrm{d}y) = \int_{0}^{\infty} \eta \gamma'(x+y) \mu(\mathrm{d}y),$$

where $\eta = \mathbb{E}^{0}[\xi_{1}]$ and
$$\mu(\mathrm{d}y) = \frac{1}{\mathbb{E}^{0}[\xi_{1}]} \Big(d_{H} \delta_{0}(\mathrm{d}y) + \Pi_{H}((y,\infty)) \,\mathrm{d}y \mathbf{1}_{(0,\infty)}(y) \Big), \quad y \ge 0.$$

• Let

$$\mathcal{O}_{\boldsymbol{x}} = \xi_{T_{\boldsymbol{x}}} - \boldsymbol{x}, \quad \boldsymbol{x} \ge 0,$$

be the overshoot of ξ over a level *x*.

$$\mathcal{A}_{H}\gamma(x) = d_{H}\gamma'(x) + \int_{0+}^{\infty} (\gamma(x+y) - \gamma(x)) \Pi_{H}(\mathrm{d}y) = \int_{0}^{\infty} \eta \gamma'(x+y) \mu(\mathrm{d}y),$$

where $\eta = \mathbb{E}^{0}[\xi_{1}]$ and
$$\mu(\mathrm{d}y) = \frac{1}{\mathbb{E}^{0}[\xi_{1}]} \Big(d_{H}\delta_{0}(\mathrm{d}y) + \Pi_{H}((y,\infty)) \,\mathrm{d}y \mathbf{1}_{(0,\infty)}(y) \Big), \quad y \ge 0.$$

• Let

$$\mathcal{O}_{\boldsymbol{x}} = \xi_{T_{\boldsymbol{x}}} - \boldsymbol{x}, \quad \boldsymbol{x} \ge \boldsymbol{0},$$

be the overshoot of ξ over a level x.

• $(\mathcal{O}_x)_{x\geq 0}$ is an \mathbb{R}_+ -valued Feller process and μ is its invariant distribution

$$\sum_{x} o_{x}$$

$$\mathcal{A}_{H}\gamma(x) = d_{H}\gamma'(x) + \int_{0+}^{\infty} (\gamma(x+y) - \gamma(x)) \Pi_{H}(\mathrm{d}y) = \int_{0}^{\infty} \eta \gamma'(x+y) \,\mu(\mathrm{d}y)$$

where $\eta = \mathbb{E}^{0}[\xi_{1}]$ and
$$\mu(\mathrm{d}y) = \frac{1}{\mathbb{E}^{0}[\xi_{1}]} \Big(d_{H}\delta_{0}(\mathrm{d}y) + \Pi_{H}((y,\infty)) \,\mathrm{d}y \mathbf{1}_{(0,\infty)}(y) \Big), \quad y \ge 0.$$

• Let

$$\mathcal{O}_{\mathbf{x}} = \xi_{T_{\mathbf{x}}} - \mathbf{x}, \quad \mathbf{x} \ge 0,$$

be the overshoot of ξ over a level *x*.

- $(\mathcal{O}_x)_{x\geq 0}$ is an \mathbb{R}_+ -valued Feller process and μ is its invariant distribution X
- natural spatial estimator

$$\tilde{f}_Y(x) \coloneqq \frac{1}{Y} \int_0^Y \eta \gamma'(x + \mathcal{O}_Y) \, \mathrm{d}y, \qquad \int \mathcal{M}$$

Ox Wathman My we An

$$\mathcal{A}_{HY}(x) = d_{HY}'(x) + \int_{0+}^{\infty} (\gamma(x+y) - \gamma(x)) \Pi_{H}(\mathrm{d}y) = \int_{0}^{\infty} \eta \gamma'(x+y) \mu(\mathrm{d}y)$$

where $\eta = \mathbb{E}^{0}[\xi_{1}]$ and
$$\mu(\mathrm{d}y) = \frac{1}{\mathbb{E}^{0}[\xi_{1}]} \Big(d_{H} \delta_{0}(\mathrm{d}y) + \Pi_{H}((y,\infty)) \,\mathrm{d}y \mathbf{1}_{(0,\infty)}(y) \Big), \quad y \ge 0.$$

• Let

$$\mathcal{O}_{\mathbf{x}} = \xi_{T_{\mathbf{x}}} - \mathbf{x}, \quad \mathbf{x} \ge 0,$$

be the overshoot of ξ over a level *x*.

- $(\mathcal{O}_x)_{x\geq 0}$ is an \mathbb{R}_+ -valued Feller process and μ is its invariant distribution
- natural spatial estimator

$$\widetilde{f}_Y(x) \coloneqq \frac{1}{Y} \int_0^Y \eta \gamma'(x + \mathcal{O}_y) \,\mathrm{d}y,$$

• temporal estimator:

$$\hat{f}_{T}(x) \coloneqq \tilde{f}_{\xi_{T}}(x) \mathbf{1}_{(0,\infty)}(\xi_{T}) = \frac{1}{\xi_{T}} \int_{0}^{\xi_{T}} \eta \gamma'(x + \mathcal{O}_{\gamma}) \, \mathrm{d} \gamma \mathbf{1}_{(0,\infty)}(\xi_{T})$$

• path integrals of the Markov process $(\mathcal{O}_x)_{x\geq 0}$ concentrate nicely if the process is exponentially ergodic, that is,

$$\|\mathbb{P}^{\gamma}(\mathcal{O}_{\chi} \in \cdot) - \mu\|_{\mathsf{TV}} \leq V(\gamma) \mathrm{e}^{-\kappa \chi}$$

• this is demonstrated in Döring and T. $(2023)^1$ under natural tail and regularity assumptions on Π

Theorem (Christensen, Strauch, T. (2024+)) Assume $\theta^* \in D$ and let $\hat{\theta}_T = \arg \max_{x \in D} \hat{f}_T(x)$. If $\Pi \sim$ Leb and has an exponential moment, it holds that

$$\mathbb{E}^{0}\left[f(\theta^{*}) - f(\hat{\theta}_{\mathcal{T}})\right] \in \mathcal{O}\left(\sqrt{\frac{\log T}{T}}\right).$$

¹L. Döring and L. Trottner (2023). Stability of overshoots of Markov additive processes. Ann. Appl. Prob.

S. Christensen and C. Strauch. **"Nonparametric learning for impulse control problems—Exploration vs. exploitation".** In: *Ann. Appl. Prob.* 33.2 (2023), pp. 1569–1587.

S. Christensen, C. Strauch, and L. Trottner. "Learning to reflect: A unifying approach for data-driven stochastic control strategies". In: *Bernoulli* (to appear).

S. Christensen, A. H. Thomsen, and L. Trottner. **Data-driven rules for multidimensional reflection problems.** arXiv:2311.06639. 2023.

L. Döring and L. Trottner. **"Stability of overshoots of Markov additive processes".** In: *Ann. Appl. Probab.* 33.6B (2023), pp. 5413–5458. ISSN: 1050-5164,2168-8737.

C. Strauch. **"Adaptive invariant density estimation for ergodic diffusions over anisotropic classes".** In: *Ann. Statist.* 46.6B (2018), pp. 3451–3480. ISSN: 0090-5364.

Summary

- we study singular control problems for ergodic diffusion processes and Lévy processes in presence of uncertainty on the characteristics
- our data-driven solutions are based on nonparametric adaptive estimation of quantities that characterize the optimal control policy
- for diffusions, the exploration-exploitation tradeoff is overcome by separating the timeline into exploration and exploitation phases
- we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of our estimators

Summary

- we study singular control problems for ergodic diffusion processes and Lévy processes in presence of uncertainty on the characteristics
- our data-driven solutions are based on nonparametric adaptive estimation of quantities that characterize the optimal control policy
- for diffusions, the exploration-exploitation tradeoff is overcome by separating the timeline into exploration and exploitation phases
- we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of our estimators

Thank you for your attention!