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A singular control problem for scalar ergodic diffusions



Framework (1D)

regular 1-dim. It6 diffusion
dX(t) = b(X;) dt + o(Xp) dW,,

with assumptions that guarantee an invariant density

1 * b(y)
70D = 00 P (ZL 20) )

TV
and ergodicity in the sense P(X; € dx) e m(x)dx.
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Framework (1D)

« Singular control: Z = (Uy, Dy)>9, U, D non-decreasing, right-continuous and adapted,
dX7 = b(XF)dt + o(XF)dW, + dU; — dD.

For reflection controls (U%, DY) we have X7 € [£,0] for all t
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Framework (1D)

« Singular control: Z = (Uy, Dy)>9, U, D non-decreasing, right-continuous and adapted,
dX7 = b(XF)dt + o(XF)dW, + dU; — dD.

For reflection controls (U%, DY) we have X7 € [£,0] for all t

- ¢ continuous, nonnegative running cost function, q,, g4 > 0.
Minimize

.
lim sup lTE[ L c(X?)ds + q,Ur + quT],

T—oo
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Solution for singular control problem

For each (&,0), the corresponding reflection strategy has value

0 2 2
S (J o) - 2 ('f);r(f) + 349 (0)71'(9)>.
¢ 2 2

0=
L( m(x) dx
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Solution for singular control problem

For each (&,0), the corresponding reflection strategy has value

0 2 2
CEO= —1 J o) - 2 @n(g) L 3970 ).
Lf m(x)dx \J& 2 2

Theorem (Alvarez (2018))

Under some technical assumptions, the optimal value for the singular problem is given by
Vsine = min C(¢,0).
sing ) (§ )

and the reflection strategy for the minimizer (¢€*,0%) is optimal.
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Data-driven approach to singular control



Central Assumption in Stochastic Control

The dynamics of the underlying process is known.
What to do if this is not the case?

« Which are the relevant characteristics of X to estimate approximately optimal boundaries?

« How does controlling the process influence the estimation?
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Crucial characteristics: b (assume o to be known).
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Crucial characteristics: b (assume o to be known).

Singular problem: Vsing = Min(g g)e[—B,—1/B]x[1/B,B] C(&,0).

0 2 2
c(€.0) = —— ([ ctntrax + 22 LA
Ji ) dx \Je - 2
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Crucial characteristics: b (assume o to be known).
Singular problem: Viing = ming g)e[——1/8]x[1/8,8] C(£, 0).

2 2
1 ( J G dx + 3% @) qdcr 3]

Jf m(x) dx

Plug-in estimator: If 77 is an estimator of 7 and we know 7 > 7> 0 on [—B, B], then for A7 := & vz set

CE¢.0) =

&) + Jr(@))

. 0 20
Crg.0) - —1— (f 3+ 27 Dy 947 )‘T(e))
f§ Ar(x) dx \J¢
(c.d)re argmin Cr(&.0)

(£.0)e[-B,—1/B]x[1/B,B]
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Crucial characteristics: b (assume o to be known).
Singular problem: Viing = ming g)e[——1/8]x[1/8,8] C(£, 0).

2 2
1 ( J G dx + 3% @) qdcr 3]

Jf m(x) dx

Plug-in estimator: If 77 is an estimator of 7 and we know 7 > 7> 0 on [—B, B], then for A7 := & vz set

CE¢.0) =

&) + Jr(@))

. é 26
Crg.6) = —— (J GO dx + 2 (5) ey + L )AT(e))
f§ Ar(x) dx \J¢
(c.d)re argmin Cr(&.0)
0)el-B1/B]x[1/B.5]
Then,
Ej | C((e, d)7) ~ Vaing| < 284 max |C.0) - Cr(£.0)|] < Es[lir — alio_pap) -

(£.0)e[-B.—1/B]x[1/B,B]

~> need non-asymptotic sup-norm rates for an appropriate nonparametric estimator 77
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Concentration of kernel density estimator

Let

be a kernel estimator for 7.
Proposition (Christensen, Strauch, T. (2024+))
Suppose that

1. b,o are Lipschitzand 0 < g < 0(x) < 7 < oo for all x;
2. for some y, A > 0, sgn(x)b(x) < —yif x| > A;
3. m, € C'(R) with Hélder continuous derivative.

Then, given a compactly supported and symmetric probability density K and the bandwidth choice
ht ~ (log T)?/NT we have

log T>

. 1/p
B [Iir — e ) eO( -

for any p > 1 and any open, bounded domain D.
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Regret given a separate observation process

Combining
E§ | C((e, 1) — Veing| < B} [Ir — mli(—p.51)]
and
. log T
E) [li7 — mli=(-.8))) € O( T )
we obtain:

Corollary (Christensen, Strauch, T. 2024+))

Given the previous assumptions on X, it holds

]E([), [C((Q/F)T) - Vsing] € O(\ loiTT)
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Exploration vs. exploitation

Naive idea:

« estimate the optimal boundary based on the controlled process

- use the strategy based on the estimated boundary
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Exploration vs. exploitation

Naive idea:

« estimate the optimal boundary based on the controlled process

- use the strategy based on the estimated boundary

Problem

Exploration vs. Exploitation!
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Strategy to overcome exploration vs. exploitation dilemma

eo 1T 37117 A _ y - o _. ..........
0 4 cJHErYm e e L
Eof -o---- I LI L |

T 5 T %
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Regret bound

Theorem (Christensen, Strauch, T. (2024+))

If we consider a data-driven reflection strategy Z s.t. the time St spent in exploration periods until
time T is of order Sy ~ T%/3, then the expected regret per time unit,

-
1 & & &
?Eg[ L C(st) ds + un7Z' + qu7Z'] — Vsings

is of order O(\flog T T7'/3).
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Extension to higher dimensions




The multivariate case

« Let now d > 2 and consider a d-simensional Langevin diffusion
dX; = —VV(Xp) dt +V2dW,,

with C2 potential V : RY - R;
. if e~V is integrable, then X is ergodic with invariant density 7 o« eV

normally reflected process in domain D of class C?

dXP = —vv(xP) +V2dW, + n(XP)dLP,

where n is the inward unit normal vector of D and LP is local time of X on D

control problem: minimize

.
C(D) := limsup lE[J c(XP)dt + KLL,—)]
T—o0 T 0

over appropriate class of domains D (¢ > costs inside domain, ¥ > 0 costs at the boundary)
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A formula for the ergodic costs

Let D be a class of domains such that for any D € D we have infx,yeﬁ pP(x,y) >o.
Theorem (Christensen, Holk, T. (2024+))

Let 709" be the (d — 1)-dimensional Hausdorff measure. For any x € D € D, it holds that

1

C(D)= ———
( ) J‘De*\/(}’)dy

(J c(y)e_v(y) dy + KJ e V) J-Cd_1(dy)).
D oD

and

1 T
?(L cxPydt +xLR) - c(D)] <p =

Ife”V € L'(RY), then in particular

B

_ _ 1 d-1
)= 0.7 = o [, cwmtrdy+x | nty)acsay)
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Optimization for star-shaped domains

« let D be strongly star-shaped at 0 ~» 8D = {r(q)q : q € S%~'} for some radial function
r: 8971 (0, 0)

« for N points {g;}, c 591 consider the polytope D with vertices PN, =1{r(g)gi, ~ D can be
split into N simplices {S;},cg with facets {F;};c7 opposite the origin

. forr = {r,-}f\i1 = {r(q,»)}f-\i1 we have

D 1 -V(x —V(x -
JD)=JD)=J#r) = ——————— Z(LI c(x)e= v )dX+KJF e~V g¢d 1(dx))

Yies [s,e7V¥ dx 1 i

- we derive explicit expressions for % based on which we propose a gradient descent algorithm to

I
optimize ergodic costs in the class of star-shaped domains
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Numerical implementation

Figure 1: Simulated optimal shapes and corresponding path realizations of reflected processes.
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Learning the optimal reflection boundary

Multivariate kernel density estimator:

T d
() = Hj | K= xomdt, k=T kG, x/h=Gilhdic, .o

i=1 hi 70 i=1

Results from Strauch (2018) show that if X satisfies both a Poincaré inequality and a Nash inequality,
then under anisotropic f-Holder smoothness assumptions on & and sufficient order of K, there exists an
adaptive bandwith choice ht such that

y log T d=2
1/p > = 4 7
A nné’o] S Wy p(T) = N where f = (
hr,T log T\ 5%
(EDH#F=, dxs,

I

|

1l
-

al-=
M=
=|=
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Learning the optimal reflection boundary

Multivariate kernel density estimator:

T d
i r(x) = Hj | K= xomdt, k=T kG, x/h=Gilhdic, .o

i=1 i 70 i=1

Results from Strauch (2018) show that if X satisfies both a Poincaré inequality and a Nash inequality,
then under anisotropic f-Holder smoothness assumptions on & and sufficient order of K, there exists an
adaptive bandwith choice ht such that

log T

—= d=2
N 1/p T’ D —
”ilT,T - 7Z'H'go] < \Pd,ﬂ(T) = VT B where ﬁ = (

)71
(EDHFe, d>3, i=t P

|

al-=
M=
=|=

1l
-

Proposition (Christensen, Holk, T. (2023+))

Let 7 := &7 v 1, where 7 > 7 on B(0, A). Let © be a family of domains s.t. B(0,1) ¢ D c B(0, 1) and
F9=1(aD) < A for any D € ©. For BT € arg minpq C(D,ﬁ'; T)’ it holds for a warm start that
T

E*[C(Dr,7) - min C(D,m)] < ¥qp(T).
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Numerical implementation

Figure 2: Estimates of the optimal shape (black) using kernel estimates after increasing periods of exploration.
Notably, after only T = 150, the estimated optimal shape has an associated cost only 0.61% higher than the true
optimum. 16/25



Episodic domain learning

« X does not hit points ~» construction of stochastic exploration/exploitation intervals as in the
one-dimensional case not feasible

« instead: alternate between exploration/exploitation intervals with deterministic lengths a; and b;
(+ small stochastic fluctuation for exploitation lengths to make sure that the process is inside of
proposed reflection domain)

Theorem (Christensen, Holk, T. (2024+))

If we choose exploration lengths a; = 2/ and exploitation lengths b; = a;/¥ 4 p(a;), then a strategy that
reflects the process in the i-th exploitation interval at a boundary estimated based on data collected
in the i-th exploration interval, yields a regret per time unit of order

1

(_('OgTT)Z)gj d=2,
log T i

(LT)3ﬁ+1+d—2’ d> 3.

%E[ET] — (DY) <
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Data-driven optimal control for Lévy processes




An optimal control problem for Lévy processes

« upward regular Lévy process on R, E°[£] € (0, o)

« for impulse controls S = (7,,, () eN

E=5- > E_-1)

A<

and for a given value function y solve

V= suplim inflT]EX[ > (E) v @)

S - n:t,<T
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Wiener—Hopf factorisation (path picture)

YW

VW\W/\-,M,A //WM MW
Yl

—— X, a Lévy process
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Wiener—Hopf factorisation (path picture)

w/\,"M,A / | .
Y

—— X, a Lévy process
— Xy = sups<; Xs, the running supremum
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Wiener—Hopf factorisation (path picture)

w/\,"M,A / | .
Y

—— X, a Lévy process
—X; = sups<; Xs, the running supremum
---------- Hy, the ascending ladder height process: suprema ‘stitched together’
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Wiener—Hopf factorisation (path picture)

A /W /!
T .

—— X, a Lévy process

_Xt = sup,<; Xs, the running supremum
---------- Hy, the ascending ladder height process: suprema ‘stitched together’
ﬁt, the descending ladder height process

19/25



Wiener—Hopf factorisation (path picture)

A /W /!
T .

—— X, a Lévy process

_Xt = sup,<; Xs, the running supremum
---------- Hy, the ascending ladder height process: suprema ‘stitched together’
ﬁt, the descending ladder height process

H, H are subordinators (increasing Lévy processes), possibly killed
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Solution for known dynamics

+ essential process determining optimal solution: ascending ladder height process Hy = &, -1, where
(L) is local time at supremum of &

« Reason: for scaling of L s.t. E°[£] = E°[H;] the long term average reward when reflecting in x is

given by

. EX Ty (&)1 - y(x)
duy’(x) + L 7 = eIMl(El7) = eged) = Ui %
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Solution for known dynamics

+ essential process determining optimal solution: ascending ladder height process Hy = &, -1, where
(L) is local time at supremum of &

« Reason: for scaling of L s.t. E°[£] = E°[H;] the long term average reward when reflecting in x is
given by
EX[y(ér, )] —v(x)

dyy () + L (10 + ) = YOO Tdy) = Ay () = lim — e

Theorem (Christensen, Sohr (2020))

Let f := Ay be unimodal with maximizer 6% (+ technical assumptions). Then v* = f(6*) and
reflecting in 0” is optimal.
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Data-driven strategy

1. Construct nonparametric estimatorfr of f = Apy given data (&)¢e[o 7]
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Data-driven strategy

1. Construct nonparametric estimatorfr of f = Apy given data (&)¢e[o 7]

2. Use ér = arg mafoT(x) as an estimator of the optimal reflection boundary
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Data-driven strategy

1. Construct nonparametric estimatorfr of f = Apy given data (&)¢e[o 7]
2. Use ér = arg mafoT(x) as an estimator of the optimal reflection boundary

3. Analyze sup-norm estimation rates offT to determine regret of the strategy, since for 6 € D

E°[£(6%) - F(6r)] < 2E°[Ifr — fli=p)-
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Data-driven strategy

1. Construct nonparametric estimatorfr of f = Apy given data (&)¢e[o 7]
2. Use ér = arg mafoT(x) as an estimator of the optimal reflection boundary

3. Analyze sup-norm estimation rates offT to determine regret of the strategy, since for 6 € D

E°[£(6%) - F(6r)] < 2E°[Ifr — fli=p)-

Statistical challenge

How can we build an estimator of Ay although local time L cannot be observed?
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Construction of an estimator

- Integration by parts reveals

00

ARr() = duy’ () + j ((x + y) — YOO TTn(dy) = j 7' (x + y) fdy),
0+ 0
where n = E°[£] and

idy) = —5—(dudo(dy) + T((y, =) dyl (o) (), y 2 0.

lEO[ff |

22/25



Construction of an estimator

- Integration by parts reveals

00

ARr() = duy’ () + j ((x + y) — YOO TTn(dy) = j 7' (x + y) fdy),
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where n = E°[£] and
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E°[4 ]<
o Let
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be the overshoot of £ over a level x. 5
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Construction of an estimator

- Integration by parts reveals

00

ARr() = duy’ () + j ((x + y) — YOO TTn(dy) = j 7' (x + y) fdy),
0+ 0
where n = E°[£] and

H(dy) = dua(dy) + T ((y, ) dyleo)(y)), ¥ 2 0.

1E°[rf]<
o Let
O :§T—X X>0,

X X 3 =
be the overshoot of £ over a level x. W
+ (Oy)x>0 is an Ry -valued Feller process and y is its invariant distributio)? 0,:

« natural spatial estimator R L CE T EETETE

~ 1 Y
fr(x) = % L ny’(x + 0,))dy, W £

22/25



Construction of an estimator

- Integration by parts reveals

00

ARr() = duy’ () + j ((x + y) — YOO TTn(dy) = j 7' (x + y) fdy),
0+ 0
where n = E°[£] and

(dy) = dua(dy) + T ((y, ) dyleo)(y)), ¥ 2 0.

E%[&; ]<
o Let
Oy=&r,—x, x20,
be the overshoot of £ over a level x.
+ (Oy)x>0 is an R;-valued Feller process and y is its invariant distribution
« natural spatial estimator

~ 1 Y
fr(x) = % L ny'(x +0))dy,

« temporal estimator:

F100 = F M getEr) = = [ "0+ 0,)dy1.mE)
&rdo
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Regret bound

« path integrals of the Markov process (O,),>o concentrate nicely if the process is exponentially
ergodic, that is,

IPY(Ox € ) — plry < V(y)e™

« this is demonstrated in Déring and T. (2023)" under natural tail and regularity assumptions on II

Theorem (Christensen, Strauch, T. (2024+))

Assume 0* € D and let éT =arg maxxeDfT(x). If II ~ Leb and has an exponential moment, it holds

that
B[/ - @] € o | £T ).

'L. Déring and L. Trottner (2023). Stability of overshoots of Markov additive processes. Ann. Appl. Prob.

23/25



References

S. Christensen and C. Strauch. “Nonparametric learning for impulse control
problems—Exploration vs. exploitation”. In: Ann. Appl. Prob. 33.2 (2023), pp. 1569 ~1587.

S. Christensen, C. Strauch, and L. Trottner. “Learning to reflect: A unifying approach for
data-driven stochastic control strategies”. In: Bernoulli (to appear).

S. Christensen, A. H. Thomsen, and L. Trottner. Data-driven rules for multidimensional
reflection problems. arXiv:2311.06639. 2023.

L. Déring and L. Trottner. “Stability of overshoots of Markov additive processes”. In: Ann.
Appl. Probab. 33.6B (2023), pp. 5413-5458. 1ssN: 1050-5164,2168-8737.

C. Strauch. “Adaptive invariant density estimation for ergodic diffusions over
anisotropic classes”. In: Ann. Statist. 46.6B (2018), pp. 3451-3480. 1sSN: 0090-5364.

24/25



« we study singular control problems for ergodic diffusion processes and Lévy processes in presence
of uncertainty on the characteristics

« our data-driven solutions are based on nonparametric adaptive estimation of quantities that
characterize the optimal control policy

« for diffusions, the exploration-exploitation tradeoff is overcome by separating the timeline into
exploration and exploitation phases

« we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of
our estimators
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« we study singular control problems for ergodic diffusion processes and Lévy processes in presence
of uncertainty on the characteristics

« our data-driven solutions are based on nonparametric adaptive estimation of quantities that
characterize the optimal control policy

« for diffusions, the exploration-exploitation tradeoff is overcome by separating the timeline into
exploration and exploitation phases

« we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of
our estimators

Thank you for your attention!
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