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A singular control problem for scalar ergodic diffusions



Framework (1D)

regular 1-dim. Itô diffusion
dX (t) = b(Xt ) dt + 𝜎(Xt ) dWt ,

with assumptions that guarantee an invariant density

𝜋(x) ≔ 1
C𝜎2(x)

exp (2∫
x

0

b(y)
𝜎2(y)

dy) ,

and ergodicity in the sense ℙ(Xt ∈ dx)
TV
⟶
t→∞

𝜋(x) dx .
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Framework (1D)

• Singular control: Z = (Ut ,Dt )t≥0, U ,D non-decreasing, right-continuous and adapted,

dXZ
t = b(XZ

t ) dt + 𝜎(XZ
t ) dWt + dUt − dDt .

For reflection controls (U𝜉,D𝜃) we have XZ
t ∈ [𝜉 , 𝜃] for all t

• c continuous, nonnegative running cost function, qu , qd > 0.
Minimize

lim sup
T→∞

1
T
𝔼[∫

T

0
c(XZ

s ) ds + quUT + qdDT ],

2/25



Framework (1D)

• Singular control: Z = (Ut ,Dt )t≥0, U ,D non-decreasing, right-continuous and adapted,

dXZ
t = b(XZ

t ) dt + 𝜎(XZ
t ) dWt + dUt − dDt .

For reflection controls (U𝜉,D𝜃) we have XZ
t ∈ [𝜉 , 𝜃] for all t

• c continuous, nonnegative running cost function, qu , qd > 0.
Minimize

lim sup
T→∞

1
T
𝔼[∫

T

0
c(XZ

s ) ds + quUT + qdDT ],

2/25



Solution for singular control problem

For each (𝜉 , 𝜃), the corresponding reflection strategy has value

C(𝜉 , 𝜃) = 1

∫𝜃𝜉 𝜋(x) dx
(∫

𝜃

𝜉
c(x)𝜋(x) dx +

qu𝜎2(𝜉 )
2

𝜋(𝜉 ) +
qd𝜎2(𝜃)

2
𝜋(𝜃)) .

Theorem (Alvarez (2018))

Under some technical assumptions, the optimal value for the singular problem is given by

Vsing = min
(𝜉 ,𝜃)

C(𝜉 , 𝜃).

and the reflection strategy for the minimizer (𝜉 ∗, 𝜃∗) is optimal.
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Data-driven approach to singular control



Questions

Central Assumption in Stochastic Control
The dynamics of the underlying process is known.

What to do if this is not the case?

• Which are the relevant characteristics of X to estimate approximately optimal boundaries?

• How does controlling the process influence the estimation?
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Estimator

Crucial characteristics: b (assume 𝜎 to be known).

Singular problem: Vsing = min(𝜉 ,𝜃)∈[−B,−1/B]×[1/B,B] C(𝜉 , 𝜃).

C(𝜉 , 𝜃) = 1

∫𝜃𝜉 𝜋(x) dx
(∫

𝜃

𝜉
c(x)𝜋(x) dx +

qu𝜎2(𝜃)
2

𝜋(𝜉 ) +
qd𝜎2(𝜉 )

2
𝜋(𝜃))

Plug-in estimator: If �̂�T is an estimator of 𝜋 and we know 𝜋 ≥ 𝜋 > 0 on [−B,B], then for �̂�∗T ≔ �̂�T ∨ 𝜋 set

ĈT (𝜉 , 𝜃) ≔
1

∫𝜃𝜉 �̂�
∗
T (x) dx

(∫
𝜃

𝜉
c(x)�̂�∗T (x) dx +

qu𝜎2(𝜉 )
2

�̂�∗T (𝜉 ) +
qd𝜎2(𝜃)

2
�̂�∗T (𝜃)) ,

(̂c, d)T ∈ argmin
(𝜉 ,𝜃)∈[−B,−1/B]×[1/B,B]

ĈT (𝜉 , 𝜃)

Then,

𝔼b [C((̂c, d)T ) − Vsing] ≤ 2𝔼b[ max
(𝜉 ,𝜃)∈[−B,−1/B]×[1/B,B]

|C(𝜉 , 𝜃) − ĈT (𝜉 , 𝜃)| ] ≲ 𝔼b [‖�̂�T − 𝜋‖L∞([−B,B])] .

⇝ need non-asymptotic sup-norm rates for an appropriate nonparametric estimator �̂�T
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Concentration of kernel density estimator

Let

�̂�T (x) ≔
1

ThT
∫
T

0
K(

x − Xt
hT

) dt

be a kernel estimator for 𝜋.
Proposition (Christensen, Strauch, T. (2024+))

Suppose that

1. b, 𝜎 are Lipschitz and 0 < 𝜎 ≤ 𝜎(x) ≤ 𝜎 < ∞ for all x ;

2. for some 𝛾 ,A > 0, sgn(x)b(x) ≤ −𝛾 if |x | > A;

3. 𝜋b ∈ C1(ℝ) with Hölder continuous derivative.

Then, given a compactly supported and symmetric probability density K and the bandwidth choice
hT ∼ (log T )2/√T we have

𝔼0
b [‖�̂�T − 𝜋‖pL∞(D)]

1/p
∈ O(

√
log T
T

),

for any p ≥ 1 and any open, bounded domain D .
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Regret given a separate observation process

Combining

𝔼0
b [C((̂c, d)T ) − Vsing] ≲ 𝔼0

b [‖�̂�T − 𝜋‖L∞([−B,B])]

and

𝔼0
b [‖�̂�T − 𝜋‖L∞([−B,B])] ∈ O(

√
log T
T

)

we obtain:

Corollary (Christensen, Strauch, T. 2024+))

Given the previous assumptions on X , it holds

𝔼0
b [C((̂c, d)T ) − Vsing] ∈ O(

√
log T
T

).
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Exploration vs. exploitation

Naïve idea:

• estimate the optimal boundary based on the controlled process

• use the strategy based on the estimated boundary

Problem
Exploration vs. Exploitation!
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Strategy to overcome exploration vs. exploitation dilemma

τ1 τ2 τ3 τ4 τ5

ξ0

0

θ0
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Regret bound

Theorem (Christensen, Strauch, T. (2024+))

If we consider a data-driven reflection strategy Ẑ s.t. the time ST spent in exploration periods until
time T is of order ST ≈ T 2/3, then the expected regret per time unit,

1
T
𝔼0
b[ ∫

T

0
c(X Ẑ

s ) ds + quU
Ẑ
T + qdD

Ẑ
T ] − Vsing,

is of order O(√log T T−1/3).
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Extension to higher dimensions



The multivariate case

• Let now d ≥ 2 and consider a d -simensional Langevin diffusion

dXt = −∇V (Xt ) dt + √2 dWt ,

with C2 potential V ∶ ℝd → ℝ;

• if e−V is integrable, then X is ergodic with invariant density 𝜋 ∝ e−V ;

• normally reflected process in domain D of class C2

dXD
t = −∇V (XD

t ) + √2 dWt + n(XD
t ) dLDt ,

where n is the inward unit normal vector of D and LD⋅ is local time of X on 𝜕D

• control problem: minimize

C(D) ≔ lim sup
T→∞

1
T
𝔼[∫

T

0
c(XD

t ) dt + 𝜅LDT ]

over appropriate class of domains D (c ≥ costs inside domain, 𝜅 > 0 costs at the boundary)
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A formula for the ergodic costs

Let 𝑫 be a class of domains such that for any D ∈ 𝑫 we have infx ,y∈D pD1 (x , y) > 0.

Theorem (Christensen, Holk, T. (2024+))

Letℋd−1 be the (d − 1)-dimensional Hausdorff measure. For any x ∈ D ∈ 𝑫, it holds that

C(D) = 1
∫D e−V (y) dy

(∫
D
c(y)e−V (y) dy + 𝜅 ∫

𝜕D
e−V (y)ℋd−1(dy)).

and

𝔼x [| 1
T
(∫

T

0
c(XD

t ) dt + 𝜅LDT ) − C(D)|] ≲D
1
√T

.

If e−V ∈ L1(ℝd ), then in particular

C(D) = C(D , 𝜋) = 1
∫D 𝜋(y) dy

(∫
D
c(y)𝜋(y) dy + 𝜅 ∫

𝜕D
𝜋(y)ℋd−1(dy)).
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Optimization for star-shaped domains

• let D be strongly star-shaped at 0 ⇝ 𝜕D = {r(q)q ∶ q ∈ Sd−1} for some radial function
r ∶ Sd−1 → (0, ∞)

• for N points {qi}Ni=1 ⊂ Sd−1 consider the polytope D̃ with vertices {pi}Ni=1 = {r(qi)qi}Ni=1 ⇝ D̃ can be
split into N simplices {SI}I∈ℐ with facets {FI}I∈ℐ opposite the origin

• for 𝒓 = {ri}Ni=1 = {r(qi)}Ni=1 we have

J(D) ≈ J(D̃) ≡ J(𝒓) = 1
∑I∈ℐ ∫SI e

−V (x) dx
∑
I∈ℐ

(∫
SI
c(x)e−V (x) dx + 𝜅 ∫

FI
e−V (x)ℋd−1(dx))

• we derive explicit expressions for 𝜕J(𝒓)
𝜕ri

based on which we propose a gradient descent algorithm to

optimize ergodic costs in the class of star-shaped domains
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Numerical implementation

Figure 1: Simulated optimal shapes and corresponding path realizations of reflected processes.
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Learning the optimal reflection boundary

Multivariate kernel density estimator:

�̂�𝒉,T (x) ≔
1

∏d
i=1 hi

∫
T

0
𝕂((x − Xt )/𝒉) dt , 𝕂(x) ≔

d

∏
i=1

K (xi), x/𝒉 ≔ (xi/hi)i=1,…,d .

Results from Strauch (2018) show that if X satisfies both a Poincaré inequality and a Nash inequality,
then under anisotropic 𝜷-Hölder smoothness assumptions on 𝜋 and sufficient order of K , there exists an
adaptive bandwith choice �̂�T such that

𝔼𝜋[‖�̂��̂�T ,T − 𝜋‖p∞]
1/p

≲ Ψd ,𝜷(T ) ≔ {

log T

√T
, d = 2,

( log T
T

)
𝜷

2𝜷+d−2 , d ≥ 3,
where 𝜷 = ( 1

d

d

∑
i=1

1
𝛽i
)
−1
.

Proposition (Christensen, Holk, T. (2023+))

Let �̂�∗T ≔ �̂�T ∨ 𝜋, where 𝜋 ≥ 𝜋 on B(0, 𝜆). Let Θ be a family of domains s.t. B(0, 𝜆) ⊂ D ⊂ B(0, 𝜆) and
ℋd−1(𝜕D) ≤ Λ for any D ∈ Θ. For D̂T ∈ argminD∈Θ C(D , �̂�∗

�̂�T ,T
), it holds for a warm start that

𝔼𝜇[C(D̂T , 𝜋) −min
D∈Θ

C(D , 𝜋)] ≲ Ψd ,𝜷(T ).
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Numerical implementation

Figure 2: Estimates of the optimal shape (black) using kernel estimates after increasing periods of exploration.
Notably, after only T = 150, the estimated optimal shape has an associated cost only 0.61% higher than the true
optimum. 16/25



Episodic domain learning

• X does not hit points ⇝ construction of stochastic exploration/exploitation intervals as in the
one-dimensional case not feasible

• instead: alternate between exploration/exploitation intervals with deterministic lengths ai and bi
(+ small stochastic fluctuation for exploitation lengths to make sure that the process is inside of
proposed reflection domain)

Theorem (Christensen, Holk, T. (2024+))

If we choose exploration lengths ai ≍ 2i and exploitation lengths bi ≍ ai/Ψd ,𝜷(ai), then a strategy that
reflects the process in the i-th exploitation interval at a boundary estimated based on data collected
in the i-th exploration interval, yields a regret per time unit of order

1
T
𝔼[C̃T ] − C(D∗) ≤ {

( (log T )
2

T
)
1
3 , d = 2,

( log T
T

)
𝜷+1

3𝜷+1+d−2 , d ≥ 3.
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Data-driven optimal control for Lévy processes



An optimal control problem for Lévy processes

• 𝜉 upward regular Lévy process on ℝ, 𝔼0[𝜉1] ∈ (0, ∞)

• for impulse controls S = (𝜏n , 𝜁n)n∈ℕ

𝜉 St = 𝜉t − ∑
n∶𝜏n≤t

(𝜉 S𝜏n ,− − 𝜁n)

and for a given value function 𝛾 solve

v∗ ≔ sup
S

lim inf
T→∞

1
T
𝔼x[ ∑

n∶𝜏n≤T
(𝛾 (𝜉 S𝜏n ,−) − 𝛾 (𝜁n)) ]
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Wiener–Hopf factorisation (path picture)

X , a Lévy process
̄Xt = sups≤t Xs , the running supremum

Ht , the ascending ladder height process: suprema ‘stitched together’

Ĥt , the descending ladder height process

H, Ĥ are subordinators (increasing Lévy processes), possibly killed
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Solution for known dynamics

• essential process determining optimal solution: ascending ladder height process Ht = 𝜉L−1t , where
(Lt )t≥0 is local time at supremum of 𝜉

• Reason: for scaling of L s.t. 𝔼0[𝜉1] = 𝔼0[H1] the long term average reward when reflecting in x is
given by

dH𝛾 ′(x) + ∫
∞

0
(𝛾 (x + y) − 𝛾(x)) ΠH(dy) = 𝒜H𝛾 (x) = lim

𝜀↓0

𝔼x [𝛾 (𝜉Tx+𝜀)] − 𝛾(x)
𝔼x [Tx+𝜀]

Theorem (Christensen, Sohr (2020))

Let f ≔ 𝒜H𝛾 be unimodal with maximizer 𝜃∗ (+ technical assumptions). Then v∗ = f (𝜃∗) and
reflecting in 𝜃∗ is optimal.
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Solution for known dynamics

• essential process determining optimal solution: ascending ladder height process Ht = 𝜉L−1t , where
(Lt )t≥0 is local time at supremum of 𝜉
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Data-driven strategy

1. Construct nonparametric estimator ̂fT of f = 𝒜H𝛾 given data (𝜉t )t∈[0,T ]

2. Use ̂𝜃T ≔ argmaxx ̂fT (x) as an estimator of the optimal reflection boundary

3. Analyze sup-norm estimation rates of ̂fT to determine regret of the strategy, since for 𝜃∗ ∈ D

𝔼0[f (𝜃∗) − f ( ̂𝜃T )] ≤ 2𝔼0[‖ ̂fT − f ‖L∞(D)].

Statistical challenge
How can we build an estimator of 𝒜H𝛾 although local time L cannot be observed?
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Construction of an estimator

• Integration by parts reveals

𝒜H𝛾 (x) = dH𝛾 ′(x) + ∫
∞

0+
(𝛾 (x + y) − 𝛾(x)) ΠH(dy) = ∫

∞

0
𝜂𝛾 ′(x + y) 𝜇(dy),

where 𝜂 = 𝔼0[𝜉1] and

𝜇(dy) = 1
𝔼0[𝜉1]

(dH𝛿0(dy) + ΠH((y , ∞)) dy1(0,∞)(y)), y ≥ 0.

• Let
𝒪x = 𝜉Tx − x , x ≥ 0,

be the overshoot of 𝜉 over a level x .
• (𝒪x )x≥0 is an ℝ+-valued Feller process and 𝜇 is its invariant distribution
• natural spatial estimator

̃fY (x) ≔
1
Y ∫

Y

0
𝜂𝛾 ′(x +𝒪y ) dy ,

• temporal estimator:

̂fT (x) ≔ ̃f𝜉T (x)1(0,∞)(𝜉T ) =
1
𝜉T ∫

𝜉T

0
𝜂𝛾 ′(x +𝒪y ) dy1(0,∞)(𝜉T )
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Regret bound

• path integrals of the Markov process (𝒪x )x≥0 concentrate nicely if the process is exponentially
ergodic, that is,

‖ℙy (𝒪x ∈ ⋅) − 𝜇‖TV ≲ V (y)e−𝜅x

• this is demonstrated in Döring and T. (2023)1 under natural tail and regularity assumptions on Π

Theorem (Christensen, Strauch, T. (2024+))

Assume 𝜃∗ ∈ D and let ̂𝜃T = argmaxx∈D ̂fT (x). If Π ∼ Leb and has an exponential moment, it holds
that

𝔼0[f (𝜃∗) − f ( ̂𝜃T )] ∈ O(
√

log T
T

).

1L. Döring and L. Trottner (2023). Stability of overshoots of Markov additive processes. Ann. Appl. Prob.
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Summary

• we study singular control problems for ergodic diffusion processes and Lévy processes in presence
of uncertainty on the characteristics

• our data-driven solutions are based on nonparametric adaptive estimation of quantities that
characterize the optimal control policy

• for diffusions, the exploration-exploitation tradeoff is overcome by separating the timeline into
exploration and exploitation phases

• we derive non-asymptotic regret rates from the minimax optimal sup-norm convergence rates of
our estimators

Thank you for your attention!
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